当前位置: 首页 > news >正文

算法金 | 使用随机森林获取特征重要性

大侠幸会幸会,我是日更万日 算法金;0 基础跨行转算法,国内外多个算法比赛 Top;放弃 BAT Offer,成功上岸 AI 研究院 Leader;

<随机森林及其应用领域> 随机森林是一种强大的机器学习算法,其基本原理在于通过集成多个决策树来提高整体性能。决策树是一种流程图结构,通过一系列的决策来达到最终目标。

而随机森林则是通过构建许多这样的决策树,每个决策树都在某种程度上是独立的,从而提高了模型的稳健性和准确性。这种算法在各种领域都有着广泛的应用。

防失联,进免费知识星球交流。算法知识直达星球:https://t.zsxq.com/ckSu3

  • 项目实战 -
    在接下来的部分,我们深入地探讨特征重要性在实际问题中的运用。我们将使用UCI红酒分类数据集,这个数据集来自UCI机器学习仓库,总共包含了3种红酒,178个样本。每个样本有13个特征,用于描述红酒的各种化学成分。https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

<加载UCI红酒分类数据集>
数据集概览

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

加载数据集

url = “https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data”
column_names = [“Class”, “Alcohol”, “Malic acid”, “Ash”, “Alcalinity of ash”, “Magnesium”, “Total phenols”, “Flavanoids”, “Nonflavanoid phenols”, “Proanthocyanins”, “Color intensity”, “Hue”, “OD280/OD315 of diluted wines”, “Proline”]
data = pd.read_csv(‘wine-1.csv’, names=column_names)

分割数据集

X = data.drop(“Class”, axis=1)
y = data[“Class”]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

在这段代码的帮助下,我们不需要任何高超的技术,只需要几行简单的代码,就能将这些数据划分成可以训练机器学习模型的形式。

<训练随机森林模型>
构建随机森林模型

创建随机森林分类器

rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)

在训练集上训练模型

rf_classifier.fit(X_train, y_train)

训练完成后,评估模型

training_accuracy = rf_classifier.score(X_train, y_train)
print(f’训练集准确率:{training_accuracy:.2f}') # 评估训练集上的准确率

test_accuracy = rf_classifier.score(X_test, y_test)
print(f’测试集准确率:{test_accuracy:.2f}') # 评估测试集上的准确率

训练集准确率:1.00测试集准确率:1.0完美!

<查看特征重要性>
特征重要性的计算

决策树是通过计算每次特征划分导致的样本杂质(信息熵等)减少程度,来决定该特征的重要性。RandomForestClassifier会自动计算并存储特征重要性。

获取特征重要性

feature_importance = pd.DataFrame({“Feature”: X_train.columns, “Importance”: rf_classifier.feature_importances_})
feature_importance = feature_importance.sort_values(by=“Importance”, ascending=False)

打印特征重要性

print(feature_importance)

<可视化特征重要性>
import numpy as np
import matplotlib.pyplot as plt

提取特征重要性信息

feature_names = X_train.columns
importances = rf_classifier.feature_importances_
indices = np.argsort(importances)[::-1]

绘制条形图

plt.bar(range(X_train.shape[1]), importances[indices], align=‘center’)

在每个条形图上显示特征重要性数值

for x in range(X_train.shape[1]):
text = ‘{:.2f}’.format(importances[indices[x]])
plt.text(x, importances[indices[x]] + 0.01, text, ha=‘center’)

设置x轴刻度标签

plt.xticks(range(X_train.shape[1]), feature_names[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.ylim(0.0, np.max(importances) + 0.05)

添加标签和标题

plt.xlabel(‘Feature’)
plt.ylabel(‘Importance’)
plt.title(‘Random Forest Feature Importance’)

自动调整布局并显示图形

plt.tight_layout()
plt.show()

<自动选择重要特征>
应用特征选择算法

from sklearn.feature_selection import SelectFromModel

使用SelectFromModel进行特征选择

sfm = SelectFromModel(rf_classifier, threshold=‘median’) # 阈值可选,比如threshold=0.1
sfm.fit(X_train, y_train)

选出5个重要特征

X_train_selected = sfm.transform(X_train)
X_test_selected = sfm.transform(X_test)

查看选中的特征

selected_features = X_train.columns[sfm.get_support()]

重新建立模型并在选中特征上进行训练

rf_classifier_selected = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier_selected.fit(X_train_selected, y_train)

在测试集上进行预测

y_pred_selected = rf_classifier_selected.predict(X_test_selected)

评估模型性能

accuracy_selected = accuracy_score(y_test, y_pred_selected)

打印选中的特征和模型评估结果

print(“Selected Features:”, list(selected_features))
print(“Model Accuracy with Selected Features:”, accuracy_selected)

自动选择了 7 个重要特征,其中脯氨酸和酒精含量位列前两。这与手动分析特征重要性的结果是一致的。通过运行可以发现,结果和13个特征的方法相当,Cool…


/ __ \ | |
| / / ___ ___ | |
| | / _ \ / _ | |
| _/\ () | () | |
_
/_/ ___/|_|

打完收工 [ 抱拳礼 ]星辰大海,江湖再会,溜了溜了~

相关文章:

算法金 | 使用随机森林获取特征重要性

大侠幸会幸会&#xff0c;我是日更万日 算法金&#xff1b;0 基础跨行转算法&#xff0c;国内外多个算法比赛 Top&#xff1b;放弃 BAT Offer&#xff0c;成功上岸 AI 研究院 Leader&#xff1b; <随机森林及其应用领域> 随机森林是一种强大的机器学习算法&#xff0c;其…...

网络安全的重要性

网络安全的重要性 网络安全是指保护网络系统免受未授权的访问、攻击、破坏或未经授权的数据泄露的能力。随着互联网的普及和数字化进程的加速&#xff0c;网络安全问题日益凸显&#xff0c;成为个人、企业和国家必须面对的重要挑战。 网络安全的威胁 网络安全威胁包括黑客攻…...

Leetcode40 无重复组合之和

题目描述&#xff1a; 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a;解集不能包含重复的组合。 思路分析 这个题是…...

详解MATLAB中处理日期和时间的函数

在MATLAB中处理日期和时间时&#xff0c;可以使用多种函数来进行计时和时间差计算。以下是对一些常用函数的详细解释&#xff1a; 1. tic 和 toc 用途&#xff1a;用来测量一段代码执行的时间。用法&#xff1a;tic; % 启动秒表 % 你的代码 elapsedTime toc; % 停止秒表&…...

Java养老护理助浴陪诊小程序APP源码

&#x1f496;护理助浴陪诊小程序&#x1f496; 一、引言&#xff1a;养老新趋势&#x1f331; 在快节奏的现代生活中&#xff0c;养老问题逐渐成为了社会关注的焦点。如何为老年人提供便捷、贴心的服务&#xff0c;让他们晚年生活更加安心、舒适&#xff0c;是我们每个人都需…...

go的singleFlight学习

Package singleflight provides a duplicate function call suppression mechanism “golang.org/x/sync/singleflight” 原来底层是 waitGroup&#xff0c;我还以为等待的协程主动让出 cpu 了&#xff0c;没想到 waitGroup.Wait() 阻塞了 doCall 不但返回值是 func 的 val 和…...

高电压技术-冲击高压发生器MATLAB仿真

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 冲击电压发生器是产生冲击电压波的装置&#xff0c;用于检验电力设备耐受大气过电压和操作过电压的绝缘性能&#xff0c;冲击电压发生器能产生标准雷电冲击电压波形&#xff0c;雷电冲击电压截波,标准操作冲击…...

【STM32】SysTick系统滴答定时器

1.SysTick简介 CM4内核的处理和CM3一样&#xff0c;内部都包含了一个SysTick定时器&#xff0c;SysTick 是一个24 位的倒计数定时器&#xff0c;当计到0 时 &#xff0c;将 从RELOAD 寄存器中自动重装载定时初值。只要不把它在SysTick 控制及状态寄存器中的使能位清除&#xf…...

编码遵循五大设计原则创建出更加健壮、可维护和可扩展的软件系统

一、单一职责原则&#xff08;SRP&#xff09; * 定义&#xff1a;一个类应该只有一个引起它变化的原因。 * 解释&#xff1a;意味着一个类应该专注于做一件事情&#xff0c;当需求发生变化时&#xff0c;只影响到一个类。这有助于降低类间的耦合&#xff0c;使得代码更易于理…...

记录一个问题

问题描述 如果一个物料既在A总成零件号下计算为托盘库&#xff0c;在B总成零件号下计算为箱库&#xff0c;则放于箱库。 A中选择排名第21的递补进托盘库。&#xff08;也需要判断递补的是否在其他总成零件中为箱库&#xff0c;是的话继续递补判断&#xff09; 解决思路 为了…...

ONLYOFFICE 8.1版本桌面编辑器测评:重塑办公效率的巅峰之作

在数字化办公日益普及的今天&#xff0c;一款高效、便捷且功能强大的桌面编辑器成为了职场人士不可或缺的工具。ONLYOFFICE 8.1版本桌面编辑器凭借其卓越的性能和丰富的功能&#xff0c;成功吸引了众多用户的目光。今天&#xff0c;我们将对ONLYOFFICE 8.1版本桌面编辑器进行全…...

【shell脚本速成】python安装脚本

文章目录 案例需求应用场景解决问题脚本思路案例代码 &#x1f308;你好呀&#xff01;我是 山顶风景独好 &#x1f388;欢迎踏入我的博客世界&#xff0c;能与您在此邂逅&#xff0c;真是缘分使然&#xff01;&#x1f60a; &#x1f338;愿您在此停留的每一刻&#xff0c;都沐…...

Redis报错:MISCONF Redis is configured to save RDB snapshots

错误提示内容&#xff1a; 2024-06-25 16:30:49 : Connection: Redis_Server > [runCommand] PING 2024-06-25 16:30:49 : Connection: Redis_Server > Response received : -MISCONF Redis is configured to save RDB snapshots, but it is currently not able to pers…...

关于使用绿联 USB-A转RJ45 2.5G网卡提速的解决问题

问题 网络下载速率低 网线是七类网线&#xff0c;外接的USB网卡驱动 我的自带网卡是 I219v 在嵌入了2.5G网络后一直无法到达1.5G以上。 平均测速300~500M 解决方案 更新了USB的网卡驱动 禁用了 I219-V的驱动。测速即可 USB驱动下载地址 https://download.csdn.net/downlo…...

Qt: QPushButton 按钮实现 上图标下文字

效果如下&#xff1a; 实现有如下几种方式&#xff1a; 1. 使用 QPushButton 设置 setStyleSheet 例&#xff1a; ui->recorder->setStyleSheet("QPushButton{"\"border: 1px solid #00d2ff; "\"min-height: 60px; "\"col…...

使用阿里云效API操作流水线

使用阿里云效&#xff08;Alibaba Cloud DevOps&#xff09;API操作流水线时&#xff0c;需要注意以下几个方面&#xff1a; 认证与授权 确保你已经获取了正确的访问凭证&#xff08;AccessKey ID 和 AccessKey Secret&#xff09;&#xff0c;并且这些凭证具有足够的权限来执行…...

使用命令行创建uniapp+TS项目,使用vscode编辑器

一:如果没有pnpm,先安装pnpm 二:使用npx工具和degit工具从 GitHub 上的 dcloudio/uni-preset-vue 仓库克隆一个名为 vite-ts 的分支,到项目中. 执行完上面命令后,去manifest.json添加appid(自己微信小程序的Id),也可不执行直接下一步,执行pnpm install ,再执行pnpm:dev:mp-weix…...

ABC355 Bingo2

分析&#xff1a; 找出其中一行或列或任意对角线被全部标记&#xff0c;即可输出回合数&#xff0c;否则输出-1 如果x%n0&#xff0c;行是x/n&#xff0c;列是n 如果x%n&#xff01;0&#xff0c;行是x/n1&#xff0c;列是x%n 如果行列或行列n1即为对角线。 标记行列对角线…...

Spring+Vue项目部署

目录 一、需要的资源 二、步骤 1.首先要拥有一个服务器 2.项目准备 vue&#xff1a; 打包: 3.服务器装环境 文件上传 设置application.yml覆盖 添加启动和停止脚本 ​编辑 安装jdk1.8 安装nginx 安装mysql 报错&#xff1a;「ERR」1273-Unknown collation: utf8m…...

【uml期末复习】统一建模语言大纲

前言&#xff1a; 关于uml的期末复习的常考知识点&#xff0c;可能对你们有帮助&#x1f609; 目录 第一部分 概念与基础 第一章 面向对象技术 第二章 统一软件过程 第三章 UML概述 第四章 用例图 第五章 类图 第六章 对象图 第七章 顺序图 第八章 协作图 第九章 状态…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

AT模式下的全局锁冲突如何解决?

一、全局锁冲突解决方案 1. 业务层重试机制&#xff08;推荐方案&#xff09; Service public class OrderService {GlobalTransactionalRetryable(maxAttempts 3, backoff Backoff(delay 100))public void createOrder(OrderDTO order) {// 库存扣减&#xff08;自动加全…...