当前位置: 首页 > news >正文

人脑计算机技术与Neuroplatform:未来计算的革命性进展

引言

想象一下,你在某个清晨醒来,准备开始一天的工作,而实际上你的大脑正作为一台生物计算机的核心,处理着大量复杂的信息。这并非科幻电影的情节,而是人脑计算机技术即将带来的现实。本文将深入探讨FinalSpark公司的Neuroplatform技术、人脑计算机的原理、优势以及面临的挑战,揭示这种革命性技术的未来发展方向。

人脑计算机技术背景

Neuroplatform的诞生

2024年五月,《前沿》(Frontiers)杂志发表了一篇题为「用于事件计算研究的开放式远程访问神经平台」的论文,介绍了Neuroplatform,这是一种耗电量比传统数字处理器低一百万倍的生物计算平台。紧接着,瑞士初创公司FinalSpark推出了首个可访问体外生物神经元的在线平台Neuroplatform,允许远程访问16个人脑类器官,标志着人脑计算机技术的重大突破。

FinalSpark公司及其技术

FinalSpark由弗雷德·乔丹和马丁·库特于2014年创立,专注于湿件计算和类器官智能。湿件计算指的是利用生物体内的神经元进行计算,而类器官智能则是通过3D培养的人脑细胞进行生物计算。这些技术的核心是培养并维持神经细胞在体外的存活和功能,最终将这些细胞用于计算机系统中。

人脑计算机的工作原理

神经细胞的培养

为了让神经干细胞健康快速地生长,科学家们需要为其准备理想的培养基,包括增强版的维生素和生长激素等。这些细胞在达到一定的生长密度后,会因接触抑制现象而抑制分化。科学家们使用StemPro™ Accutase溶液分离细胞,并将其放入培养基中,经过进一步培养,形成类脑器官。

微电极阵列(MEA)的应用

类脑器官形成后,需要捕捉并放大神经电信号。MEA系统中的微电极可以精准地插入或紧挨细胞膜,记录快速变化的神经活动。Neuroplatform系统使用多达四个MEA实时测量细胞活动,并通过模数转换器将模拟信号转化为二进制信号,实现信息处理。

人脑计算机的优势

低能耗

人脑计算机的一个显著优势是低能耗。人脑有860亿个神经元在运行,功率仅为20W,相当于一个灯泡。而训练一个像GPT-3这样的大语言模型需要消耗10 GWh的电量,相当于特斯拉Model S绕地球赤道跑一千圈的能量。

并行计算

传统计算机内部的电子传递信息靠的是固定的电路,效率较低。而生物神经网络则是一个复杂的并行系统,每个神经元都可以同时与多个下游神经元传递信号,实现大规模的并行计算,提高信息处理效率。

面临的挑战

脑细胞的生存问题

尽管Neuroplatform中的类脑器官已经能存活100天,但由于缺乏自然的血管系统,氧气和营养物质扩散到组织内部的能力有限,导致中心区域缺氧和营养不良。科学家们尝试通过3D打印微小血管网来解决这个问题,但仍面临工程量大和精细度要求高的挑战。

神经可塑性

神经元之间的连接强度可以改变,这种神经可塑性是实现复杂认知功能的关键。然而,在人工培养环境下,如何让“缸中之脑”获得实际体验,进行神经连接的精细调整,仍是一个未解的难题。

道德和伦理问题

如果类脑器官在培养过程中具备了某种意识,人类应如何对待这些“缸中之脑”?这涉及到深刻的伦理道德问题,需慎重对待和讨论。

未来展望

人脑计算机技术具有低能耗、高效率和自适应学习的优势,可能成为未来科技发展的重要方向。然而,技术和伦理挑战依然存在。随着研究的不断深入,未来的人脑计算机技术或许能够突破现有瓶颈,实现更加广泛和深远的应用。

结论

人脑计算机技术代表了计算领域的革命性进展。尽管目前仍面临诸多技术和伦理挑战,但其低能耗、高效率和并行计算的优势,使其在未来具有巨大的发展潜力。通过Neuroplatform这样的平台,我们或许正一步步接近实现真正的生物计算机,为人工智能的发展开辟新的道路。

在这里插入图片描述

相关文章:

人脑计算机技术与Neuroplatform:未来计算的革命性进展

引言 想象一下,你在某个清晨醒来,准备开始一天的工作,而实际上你的大脑正作为一台生物计算机的核心,处理着大量复杂的信息。这并非科幻电影的情节,而是人脑计算机技术即将带来的现实。本文将深入探讨FinalSpark公司的…...

新版周易测算系统源码 去授权完美运行

已经去掉授权可以完美运行 更新了三个模板市面上都是几千几千的卖 更新了三套首页新ui 自己后台切换就行 源码大小:338M 源码下载:https://download.csdn.net/download/m0_66047725/89447857 更多资源下载:关注我....

【PYTHON】力扣刷题笔记 -- 0053. 最大子数组和【中等】

题目描述:给你一个整数数组 array: nums ,请你找出一个具有最大和的连续子数组 sub-array,返回其最大和 子数组(最少包含一个元素): 是数组中的一个连续部分 示例 1: 输入:nums [-2,1,-3,4,-1…...

Linux启动elasticsearch,提示权限不够

Linux启动elasticsearch,提示权限不够,如下图所示: 解决办法: 设置文件所有者,即使用户由权限访问文件 sudo chown -R 用户名[:新组] ./elasticsearch-8.10.4 //切换到elasticsearch-8.10.4目录同级 chown详细格式…...

css 布局出现无法去除的空白

案件介绍&#xff1a;在没有设置任何的css样式的情况下 文字顶部出现无法去除的空白 源代码 <div click"onClick" ><div class"tableTextButton--container"></div><Icon v-if"loading || thisLoading" type"ios-lo…...

使用SpringBoot整合filter

SpringBoot整合filter&#xff0c;和整合servlet类似&#xff0c;也有两种玩儿法 1、创建一个SpringBoot工程&#xff0c;在工程中创建一个filter过滤器&#xff0c;然后用注解WebFilter配置拦截的映射 2、启动类还是使用ServletComponentScan注解来扫描拦截器注解WebFilter 另…...

Python酷库之旅-第三方库openpyxl(15)

目录 一、 openpyxl库的由来 1、背景 2、起源 3、发展 4、特点 4-1、支持.xlsx格式 4-2、读写Excel文件 4-3、操作单元格 4-4、创建和修改工作表 4-5、样式设置 4-6、图表和公式 4-7、支持数字和日期格式 二、openpyxl库的优缺点 1、优点 1-1、支持现代Excel格式…...

葡萄串目标检测YoloV8——从Pytorch模型训练到C++部署

文章目录 软硬件准备数据准备数据处理脚本模型训练模型部署数据分享软硬件准备 训练端 PytorchultralyticsNvidia 3080Ti部署端 fastdeployonnxruntime数据准备 用labelimg进行数据标注 数据处理脚本 xml2yolo import os import glob import xml.etree.ElementTree as ETxm…...

OpenAI推出自我改进AI- CriticGPT

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

springboot系列七: Lombok注解,Spring Initializr,yaml语法

老韩学生 LombokLombok介绍Lombok常用注解Lombok应用实例代码实现idea安装lombok插件 Spring InitializrSpring Initializr介绍Spring Initializr使用演示需求说明方式1: IDEA创建方式2: start.spring.io创建 注意事项和说明 yaml语法yaml介绍使用文档yaml基本语法数据类型字面…...

专访ATFX首席战略官Drew Niv:以科技创新引领企业高速发展

在金融科技创新的浪潮中&#xff0c;人才是推动企业高速发展的核心驱动力&#xff0c;优质服务是引领企业急速前行的灯塔。作为差价合约领域的知名品牌&#xff0c;ATFX高度重视人才引进工作&#xff0c;秉持“聚天下英才而用之”的理念&#xff0c;在全球范围内广揽科技精英&a…...

关于FPGA对 DDR4 (MT40A256M16)的读写控制 4

关于FPGA对 DDR4 &#xff08;MT40A256M16&#xff09;的读写控制 4 语言 &#xff1a;Verilg HDL 、VHDL EDA工具&#xff1a;ISE、Vivado、Quartus II 关于FPGA对 DDR4 &#xff08;MT40A256M16&#xff09;的读写控制 4一、引言二、DDR4 SDRAM设备中模式寄存器重要的模式寄存…...

android——Livedata、StateFlow、ShareFlow和Channel的介绍和使用

目录 一、LiveData介绍 二、StateFlow介绍 三、ShareFlow介绍 四、Channel介绍 小结 一、LiveData介绍 LiveData是一种在Android开发中用于观察数据变化的组件。它可以被观察者注册并在数据变化时通知观察者&#xff0c;从而实现数据的实时更新。LiveData具有生命周期感知能力&…...

Debezium 同步 MySQL 实时数据并解决数据重复消费问题

我们使用 Debezium 实时同步一个 MySQL 的数据到另一个 MySQL&#xff0c;代码网上基本都有&#xff0c;都是在引入 debezium-api&#xff0c;debezium-embedded 后写 Java 代码&#xff0c;做好了基本配置后启动程序&#xff0c;Debezium 会自动读取 MySQL 的实时 binlog&…...

【图像处理】1、使用OpenCV库图像轮廓的检测和绘制

OpenCV (Open Source Computer Vision Library) 是一个用于计算机视觉和图像处理的开源库。它提供了数百种用于图像和视频分析的算法&#xff0c;并被广泛应用于研究和商业领域。OpenCV 支持多种编程语言&#xff0c;包括 C、Python、Java 等&#xff0c;具有跨平台的特性&…...

【AI编译器】triton学习:矩阵乘优化

Matrix Multiplication 主要内容&#xff1a; 块级矩阵乘法 多维指针算术 重新编排程序以提升L2缓存命 自动性能调整 Motivations 矩阵乘法是当今高性能计算系统的一个关键组件&#xff0c;在大多数情况下被用于构建硬件。由于该操作特别复杂&#xff0c;因此通常由软件提…...

动静分离网络

动静分离网络的主要目的是分别处理视频帧中的静止区域和运动区域&#xff0c;以便对不同区域采用不同的去噪策略。这里提供一个实现思路&#xff0c;通过两个分支网络分别处理静止区域和运动区域&#xff0c;然后将两者的输出融合起来。 实现步骤 帧差图生成&#xff1a;计算…...

Python商务数据分析知识专栏(三)——Python数据分析的应用①Matplotlib数据可视化基础

Python商务数据分析知识专栏&#xff08;三&#xff09;——Python数据分析的应用①Matplotlib数据可视化基础 Matplotlib数据可视化基础1.掌握绘图基本语法与常用绘图2.分析特征间关系3.分析特征内部数据分布与分散情况 Matplotlib数据可视化基础 1.掌握绘图基本语法与常用绘…...

DataV大屏组件库

DataV官方文档 DataV组件库基于Vue &#xff08;React版 (opens new window)&#xff09; &#xff0c;主要用于构建大屏&#xff08;全屏&#xff09;数据展示页面即数据可视化&#xff0c;具有多种类型组件可供使用&#xff1a; 源码下载...

paraview跨节点并行渲染

参考&#xff1a; https://cloud.tencent.com/developer/ask/sof/101483588 ParaView 支持使用其内置的网络拓扑来进行跨节点的并行渲染。以下是一个简单的步骤来设置和运行跨节点的并行渲染&#xff1a; 确保你的计算环境支持多节点计算&#xff0c;比如通过SSH、MPI或其他集…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...