ElasticSearch安装部署
简介
Elasticsearch 是一个开源的分布式搜索和分析引擎,用于实时地存储、检索和分析大数据量。它基于 Apache Lucene 搜索引擎库构建而成,提供了一个强大、稳定且易于扩展的搜索解决方案。
主要特点和用途:
-
分布式存储和搜索: Elasticsearch 能够处理大规模的数据,将数据分布式存储在多个节点上,并提供快速的实时搜索和分析功能。
-
全文搜索: 支持对文本内容进行全文搜索和复杂的查询操作,包括关键字搜索、短语搜索、通配符搜索等。
-
实时数据分析: 支持实时地对数据进行聚合、分析和可视化,帮助用户快速发现数据中的关键信息和趋势。
-
多种数据类型支持: 不仅支持结构化数据,还能处理半结构化和非结构化数据,如日志、地理空间数据等。
-
高可用性和弹性扩展: 具有高可用性和容错性,能够通过添加节点来实现水平扩展,处理更大的数据负载。
-
开放性和生态系统: Elasticsearch 提供了丰富的 RESTful API 和丰富的插件生态系统,支持与各种数据源和工具集成,如 Logstash、Kibana 等。
主要应用场景:
-
搜索引擎: 提供强大的全文搜索功能,用于网站、应用程序和企业内部文档的搜索和检索。
-
日志和指标分析: 处理和分析大量的日志数据和系统指标,支持实时监控和故障诊断。
-
业务智能和实时报表: 通过对数据的聚合和分析,支持业务智能、实时报表和数据可视化。
-
安全信息与事件管理(SIEM): 用于安全信息和事件管理,帮助实时检测和分析安全威胁。
总之,Elasticsearch 是一个功能强大且广泛应用于各种大数据场景中的搜索和分析引擎,提供了高效、可靠的数据管理和查询解决方案。
安装
-
添加yum仓库
-
# root执行 # 导入仓库密钥 rpm --import https://artifacts.elastic.co/GPG-KEY-elasticsearch # 添加yum源 # 编辑文件 vim /etc/yum.repos.d/elasticsearch.repo [elasticsearch-7.x] name=Elasticsearch repository for 7.x packages baseurl=https://artifacts.elastic.co/packages/7.x/yum gpgcheck=1 gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch enabled=1 autorefresh=1 type=rpm-md # 更新yum缓存 yum makecache 更新软件包信息: YUM 会连接到配置的软件源(如 /etc/yum.repos.d/ 中的文件)并获取最新的软件包列表信息。 加快后续操作: 重新生成缓存后,软件包搜索、安装和更新的速度会显著提升,因为 YUM 不再需要从网络上获取软件包列表,而是直接使用本地缓存。 确保数据最新性: 通过执行 yum makecache,可以确保你使用的软件包列表是最新的,因为它会忽略本地缓存的有效期,强制重新下载并更新。
-
-
安装es
yum install -y elasticsearch
-
配置es
vim /etc/elasticsearch/elasticsearch.yml # 17行,设置集群名称 cluster.name: my-cluster # 23行,设置节点名称 node.name: node-1 # 56行,允许外网访问 network.host: 0.0.0.0 # 74行,配置集群master节点 cluster.initial_master_nodes: ["node-1"]
-
启动es
systemctl start | stop | status | enable | disable elasticsearch
-
关闭防火墙
systemctl stop firewalld systemctl disable firewalld
-
测试
浏览器打开:http://ip:9200/?pretty

相关文章:
ElasticSearch安装部署
简介 Elasticsearch 是一个开源的分布式搜索和分析引擎,用于实时地存储、检索和分析大数据量。它基于 Apache Lucene 搜索引擎库构建而成,提供了一个强大、稳定且易于扩展的搜索解决方案。 主要特点和用途: 分布式存储和搜索: E…...
数据赋能(132)——开发:数据转换——影响因素、直接作用、主要特征
影响因素 数据转换过程中需要考虑的一些影响因素: 数据格式与结构: 不同系统或应用可能使用不同的数据格式(如JSON、XML、CSV等)和数据结构(如关系型数据库、非关系型数据库等)。数据转换需要确保原始数据…...
TMGM:ASIC撤销禁令,TMGM强化合规、重启差价合约服务
TMGM作为差价合约(CFDs)与保证金外汇交易领域的领航者,安全、合规、高效被奉为我集团的终身使命。澳大利亚证券和投资委员会(ASIC)已正式撤销了早前针对TMGM差价合约业务实施的临时止损令。这一误会的解除,…...
基于SpringBoot网吧管理系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 Java精品实战案例《600套》 2025-2026年最值得选择的Java毕业设计选题大全࿱…...
实测2024年最佳的三款Socks5代理IP网站
一、引言 在浩瀚的网络世界中,Socks5代理IP服务如同导航灯塔,指引我们穿越数据海洋,安全、稳定地访问目标网站。作为专业的测评团队,我们深知一款优秀的Socks5代理IP网站需要具备哪些特质:稳定的IP资源、高效的连接速…...
Pythonnet能导入clr,但无法引入System模块?
【pythonnet详解】—— Python 和 .NET 互操作的库_pythonnet 详细使用-CSDN博客 Python中动态调用C#的dll动态链接库中方法_python 如何调用c# dll-CSDN博客 需求:Python调用并传List<float>类型参数给.Net 起初:直接 # 创建一个Python浮点数…...
媒体宣发套餐的概述及推广方法-华媒舍
在今天的数字化时代,对于产品和服务的宣传已经变得不可或缺。媒体宣发套餐作为一种高效的宣传方式,在帮助企业塑造品牌形象、扩大影响力方面扮演着重要角色。本文将揭秘媒体宣发套餐,为您呈现一条通往成功的路。 1. 媒体宣发套餐的概述 媒体…...
Windows和Linux C++判断磁盘空间是否充足
基本是由百度Ai写代码生成的,记录一下。实现此功能需要调用系统的API函数。 对于Windows,可调用函数GetDiskFreeSpaceEx,使用该函数需要包含头文件windows.h。该函数的原型: 它的四个参数: lpDirectoryName࿰…...
数据访问层如何提取数据到其他层,其他类中
当然可以,以下是一些具体的例子,展示了如何将数据库访问逻辑封装在一个单独的类中,并在其他类中使用这个类来获取数据。 数据库访问类(DatabaseAccess.java): java复制代码 import java.sql.*; import ja…...
【JS】AI总结:JavaScript中常用的判空方法
在JavaScript中,判空是一个常见的操作,因为变量可能未定义、未初始化或包含特定的空值。以下是JavaScript中常用的判空方法: 使用if语句直接判断: 如果变量是null、undefined、0、NaN、空字符串(""ÿ…...
Rust单元测试、集成测试
单元测试、集成测试 在了解了如何在 Rust 中写测试用例后,本章节我们将学习如何实现单元测试、集成测试,其实它们用到的技术还是上一章节中的测试技术,只不过对如何组织测试代码提出了新的要求。 单元测试 单元测试目标是测试某一个代码单…...
vue全局方法plugins/utils
一、在src目录下创建一个plugins文件夹 test.ts文件存放创建的方法,index.ts用于接收所有自定义方法进行统一处理 二、编写自定义方法 // test.ts文件 export default {handleTest(val1: number, val2: number) {// 只是一个求和的方法return val1 val2;}, };三…...
高阶算法班从入门到精通之路
课程介绍 本课程旨在帮助学员深入理解算法与数据结构的核心概念,从而掌握高级算法设计与分析技能。每集课程内容精心设计,涵盖了常用数据结构、经典算法及其应用场景等方面的深度讲解,同时通过大量实例演练,帮助学员提升解决实际…...
C++ 左值右值
文章目录 概述左值右值右值引用左值和右值的互换 小结 概述 左值和右值属于2中不同的表达式类型;它们在表达式中扮演不同的角色,特别是在赋值操作和函数参数传递中。 左值 定义:左值是指那些在内存中有确定位置的表达式,可以出…...
[数据集][目标检测]水面垃圾水面漂浮物检测数据集VOC+YOLO格式3749张1类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3749 标注数量(xml文件个数):3749 标注数量(txt文件个数):3749 标注…...
[深度学习] 卷积神经网络CNN
卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理数据具有类似网格结构的神经网络,最常用于图像数据处理。 一、CNN的详细过程: 1. 输入层 输入层接收原始数据,例如一张图像,它可以被…...
区别QPushButton和QToolButton
在刚开始学习Qt时,可能很难理解QPushButton和QToolButton之间的区别。 QToolButton通常用于QToolBar中,常常只显示图标,而不显示文本。那么,它们的主要区别是什么?什么时候应该使用QPushButton,什么时候应该使用QToolButton? 了解这一点很重要,这样我们才能选择最合适…...
【Python】已解决:TypeError: Object of type JpegImageFile is not JSON serializable
文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决:TypeError: Object of type JpegImageFile is not JSON serializable 一、分析问题背景 在进行Python编程时,特别是处理图像数据和JSON序列化时&…...
超简单的nodejs使用log4js保存日志到本地(可直接复制使用)
引入依赖 npm install log4js 新建配置文件logUtil.js const log4js require(log4js);// 日志配置 log4js.configure({appenders: {// 控制台输出consoleAppender: { type: console },// 文件输出fileAppender: {type: dateFile,filename: ./logs/default, //日志文件的存…...
Python面试宝典第1题:两数之和
题目 给定一个整数数组 nums 和一个目标值 target,找出数组中和为目标值的两个数的索引。可以假设每个输入只对应唯一的答案,且同样的元素不能被重复利用。比如:给定 nums [2, 7, 11, 15] 和 target 9,返回 [0, 1],因…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
