当前位置: 首页 > news >正文

[C#][opencvsharp]C#使用opencvsharp进行年龄和性别预测支持视频图片检测

使用 OpenCVSharp 来调用 age_net.caffemodelgender_net.caffemodel 来进行性别和年龄预测涉及几个步骤。以下是一个简化的流程和示例文案:

1. 准备工作

  • 确保你已经安装了 OpenCVSharp 和相关的依赖项。
  • 确保你有 age_net.prototxtage_net.caffemodelgender_net.prototxtgender_net.caffemodel 文件。

2. 加载模型

首先,你需要使用 OpenCVSharp 加载这两个模型。这通常涉及读取 .prototxt 文件(定义网络结构)和 .caffemodel 文件(包含权重)。

示例文案
// 加载年龄预测模型
using (var netAge = CvDnn.ReadNetFromCaffe("age_net.prototxt", "age_net.caffemodel"))
{// 确保模型已正确加载if (netAge.Empty()){Console.WriteLine("Error loading age network.");return;}// 类似地,加载性别预测模型...using (var netGender = CvDnn.ReadNetFromCaffe("gender_net.prototxt", "gender_net.caffemodel")){// 确保模型已正确加载if (netGender.Empty()){Console.WriteLine("Error loading gender network.");return;}// ... 进行后续处理,如图像预处理、预测等}
}

3. 图像预处理

在将图像输入到网络之前,你可能需要进行一些预处理,如调整大小、归一化等。

示例文案
// 读取图像
Mat image = Cv2.ImRead("test_image.jpg");// 图像预处理(例如,调整大小、归一化等)
Mat blobAge = Dnn.BlobFromImage(image, 1.0, new Size(227, 227), new Scalar(104, 117, 123), true, false);
Mat blobGender = blobAge.Clone(); // 假设两者需要相同的预处理// 将blob设置为网络的输入
netAge.SetInput(blobAge);
netGender.SetInput(blobGender); // 注意:在实际应用中,可能需要单独处理这两个网络

4. 进行预测

使用 forward 方法进行预测。对于年龄预测,你可能需要解析输出以获取最可能的年龄。对于性别预测,你可能需要确定输出是否超过某个阈值来确定是男性还是女性。

示例文案
// 进行年龄预测
Mat probAge = netAge.Forward();
// 解析 probAge 以获取最可能的年龄(这取决于你的网络如何输出年龄)// 进行性别预测
Mat probGender = netGender.Forward();
// 解析 probGender 以确定性别(例如,基于某个阈值)// ... 在这里添加代码来解析预测结果并输出到控制台或界面上

5. 解析和输出结果

解析网络的输出,并将其转换为可理解的格式(如年龄值和性别标签)。然后,你可以将这些结果输出到控制台、保存到文件或显示在界面上。

注意:

  • 上述代码是一个简化的示例,并未包含所有必要的错误处理和优化。
  • 具体的预处理步骤(如大小调整、均值减法等)可能因你的模型和输入数据而异。
  • 解析输出时,你可能需要了解你的模型是如何设计输出的(例如,年龄是作为连续值还是分类输出的)。
  • 对于性别预测,你可能需要确定一个阈值来将输出转换为“男性”或“女性”标签。这个阈值可能需要根据你的模型进行调整。
    【界面展示】
    在这里插入图片描述

【效果演示】
在这里插入图片描述
在这里插入图片描述

【视频演示】
https://www.bilibili.com/video/BV1zJ4m1u7ne/
【测试环境】
vs2019
netframework4.7.2
opencvsharp==4.8.0
【源码下载】
https://download.csdn.net/download/FL1623863129/89483598

相关文章:

[C#][opencvsharp]C#使用opencvsharp进行年龄和性别预测支持视频图片检测

使用 OpenCVSharp 来调用 age_net.caffemodel 和 gender_net.caffemodel 来进行性别和年龄预测涉及几个步骤。以下是一个简化的流程和示例文案: 1. 准备工作 确保你已经安装了 OpenCVSharp 和相关的依赖项。确保你有 age_net.prototxt、age_net.caffemodel、gende…...

pdf拆分,pdf拆分在线使用,pdf拆分多个pdf

在数字化的时代,pdf文件已经成为我们日常办公、学习不可或缺的文档格式。然而,有时候我们可能需要对一个大的pdf文件进行拆分,以方便管理和分享。那么,如何将一个pdf文件拆分成多个pdf呢?本文将为你推荐一种好用的拆分…...

VScode Python debug:hydra.run.dir 写入launch.json

记录一个debug时的经验: VS code extension名称版本Pythonv2024.8.1Python Debuggerv2024.6.0 我配置的project运行 train.py 时需要在 terminal 输入参数 hydra.run.dirxxx 我想用 vscode debug 查看内部代码,按以往的经验需要将args写入launch.json&…...

ExVideo: 提升5倍性能-用于视频合成模型的新型后调谐方法

标题:ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning作者: Zhongjie Duan; Wenmeng Zhou; Cen Chen; Yaliang Li; Weining QianDOI: 10.48550/arXiv.2406.14130摘要: Recently, advancements in video synthesis have attracted s…...

laravel Dcat Admin 入门应用(三)Grid 之 Column

Dcat Admin 是一个基于 Laravel-admin 二次开发而成的后台构建工具,只需很少的代码即可构建出一个功能完善的高颜值后台系统。支持页面一键生成 CURD 代码,内置丰富的后台常用组件,开箱即用,让开发者告别冗杂的 HTML 代码。 larav…...

掌握Llama 2分词器:填充、提示格式及更多

目录 简介Llama 2分词器基础为分词器设置填充添加特殊标记使用BOS和EOS标记进行分词定义填充标记训练中使用填充标记高级功能:掩码标记Llama的提示格式结论 简介 在语言模型领域,时间变化迅速。自Llama 2发布已经有几个月了,但关于其分词器…...

pdf合并,pdf合并成一个pdf,pdf合并在线网页版

在处理pdf文件的过程中,有时我们需要将多个pdf文件合并成一个pdf文件。作为一名有着丰富计算机应用经验的技术博主,我将为您详细介绍如何将多个pdf文件合并成一个pdf文件。 pdf合并方法:使用, “轻云处理pdf官网” 打开 “轻云处…...

算法基础--------【图论】

图论(待完善) DFS:和回溯差不多 BFS:进while进行层序遍历 定义: 图论(Graph Theory)是研究图及其相关问题的数学理论。图由节点(顶点)和连接这些节点的边组成。图论的研究范围广泛,涉及路径、…...

x86和x64架构的区别及应用

x86和x64架构的区别及应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在计算机硬件和软件领域,x86和x64是两种常见的处理器架构。它们在计算能…...

2024年度总结:不可错过的隧道IP网站评估推荐

随着网络技术的飞速发展,隧道IP服务成为了许多企业和个人在进行网络活动时的得力助手。作为专业的测评团队,我们经过一整年的深入研究和测试,为大家带来了三款备受瞩目的隧道IP网站推荐——品易HTTP、极光HTTP和一G代理。接下来,我…...

Linux下VSCode的安装和基本使用

应用场景:嵌入式开发。 基本只需要良好的编辑环境,能支持文件搜索和跳转,就挺OK的。 之所以要在Linux下安装,是因为在WIN11上安装后,搜索功能基本废了,咋弄都弄不好,又不方便重装win系统&#x…...

C# 实现websocket双向通信

🎈个人主页:靓仔很忙i 💻B 站主页:👉B站👈 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:C# 🤝希望本文对您有所裨益,如有不足之处&#xff…...

Spring Boot结合FFmpeg实现视频会议系统视频流处理与优化

在构建高效稳定的视频会议系统时,实时视频流的处理和优化是开发者面临的核心挑战之一。这不仅仅是简单的视频数据传输,更涉及到一系列复杂的技术问题,需要我们深入分析和有效解决。 高并发与实时性要求: 视频会议系统通常需要支持多人同时进行视频通话,这就意味着系统需要…...

扫扫地,搞搞卫生 ≠ 车间5S管理

在制造业的日常运营中,车间管理是一项至关重要的工作,它直接关系到生产效率、产品质量以及员工的工作环境。然而,许多人常常将简单的“扫扫地,搞搞卫生”等同于车间5S管理,这种误解不仅可能导致管理效果不佳&#xff0…...

ES(笔记)

es就是json请求体代替字符串查询 dsl查询和过滤,一个模糊查询,一个非模糊查询 must,should 做模糊查询的,里面都是match,根据查询内容进行匹配,filter过滤,term词元查询,就是等值查…...

开箱即用的fastposter海报生成器

什么是 fastposter ? fastposter 海报生成器是一款快速开发海报的工具。只需上传一张背景图,在对应的位置放上组件(文字、图片、二维码、头像)即可生成海报。 点击代码直接生成各种语言 SDK 的调用代码,方便快速开发。 软件特性&…...

力扣每日一题 6/28 动态规划/数组

博客主页:誓则盟约系列专栏:IT竞赛 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 2742.给墙壁刷油漆【困难】 题目: 给你两个长度为 n 下标从 0…...

[数据集][目标检测]游泳者溺水检测数据集VOC+YOLO格式8275张4类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):8275 标注数量(xml文件个数):8275 标注数量(txt文件个数):8275 标注…...

若依 ruoyi 分离版 vue 简单的行内编辑实现

需要实现的效果&#xff1a;双击文本 - 修改文本 - 保存修改。 原码&#xff1a;仅文本显示文字内容 <el-table-column label"商品" align"center" prop"goodsName" width"200" v-if"columns[1].visible" /> 实现…...

【工具】API文档生成DocFX

文章目录 总述示例第一步&#xff1a;安装 DocFX第二步&#xff1a;初始化项目第三步&#xff1a;编辑配置文件第四步&#xff1a;编写文档第五步&#xff1a;生成文档第六步&#xff1a;预览文档第七步&#xff1a;部署文档 总述 DocFX 是一个由微软开发的开源文档生成工具&a…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...