当前位置: 首页 > news >正文

[C++][数据结构][图][中][图的遍历][最小生成树]详细讲解

目录

  • 1.图的遍历
    • 1.广度优先遍历
    • 2.深度优先遍历
  • 2.最小生成树
    • 1.Kruskal算法
    • 2.Prim算法


1.图的遍历

  • 给定一个图G和其中任意一个顶点 v 0 v_0 v0,从 v 0 v_0 v0出发,沿着图中各边访问图中的所有顶点,且每个顶 点仅被遍历一次
    • “遍历”:对结点进行某种操作的意思

1.广度优先遍历

请添加图片描述

  • **例如:**现在要找东西,假设有三个抽屉,东西在哪个抽屉不清楚,现在要将其找到,广度优先遍历的做法是:

    1. 先将三个抽屉打开,在最外层找一遍
    2. 将每个抽屉中红色的盒子打开,再找一遍
    3. 将红色盒子中绿色盒子打开,再找一遍
    4. 直到找完所有的盒子
      • 注意:每个盒子只能找一次,不能重复找
        请添加图片描述
  • 思考:如何防止节点被重复遍历?

    • 增加一个数组,用于标记是否入过队列,这样可以防止重复遍历
void BFS(const V& src)
{size_t srci = GetVertexIndex(src);queue<int> q;vector<bool> visited(_vertexs.size(), false); // 标记数组q.push(srci);visited[srci] = true;int levelSize = 1; // 控制每层出的数量while (!q.empty()){// 一层一层出for (size_t i = 0; i < levelSize; i++){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << " ";// 把front的邻接顶点入队列for (size_t j = 0; j < _vertexs.size(); j++){if (_matrix[front][j] != MAX_W && visited[j] == false){q.push(j);visited[j] = true;}}}cout << endl;levelSize = q.size();}
}

2.深度优先遍历

请添加图片描述

  • **例如:**现在要找东西,假设有三个抽屉,东西在哪个抽屉不清楚,现在要将其找到,深度优先遍历的做法是:
    1. 先将第一个抽屉打开,在最外层找一遍
    2. 将第一个抽屉中红盒子打开,在红盒子中找一遍
    3. 将红盒子中绿盒子打开,在绿盒子中找一遍
    4. 递归查找剩余的两个盒子
    • **深度优先遍历:**将一个抽屉一次性遍历完(包括该抽屉中包含的小盒子),再去递归遍历其他盒子
  • 如果给的图不是连通图,以某个顶点为起点没有遍历完成,怎么保证遍历完剩下的顶点
    • 在visited数组中找没有遍历过的顶点,再次进行遍历
void _DFS(size_t srci, vector<bool>& visited)
{cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;for (size_t i = 0; i < _vertexs.size(); i++){if (_matrix[i] != MAX_W && visited[i] == false){_DFS(i, visited);}}
}void DFS(const V& src)
{size_t srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);// 处理存在不连通的情况for (size_t i = 0; i < _vertexs.size(); i++){if (!visited[i]){_DFS(i, visited);}}
}

2.最小生成树

  • 连通图中的每一棵生成树,都是原图的一个极大无环子图,即:
    • 从其中删去任何一条边,生成树就不在连通
    • 反之,在其中引入任何一条新边,都会形成一条回路
  • 若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边,因此构造最小生成树的准则有三条:
    • 只能使用图中权值最小的边来构造最小生成树
      • 最小的成本让着N个顶点连通
    • 只能使用恰好n-1条边来连接图中的n个顶点
    • 选用的n-1条边不能构成回路
  • 构造最小生成树的方法:Kruskal算法和Prim算法,这两个算法都采用了逐步求解的贪心策略
  • 贪心算法:
    • 指在问题求解时,总是做出当前看起来最好的选择
      • 即:贪心算法做出的不是整体最优的的选择,而是某种意义上的局部最优解
    • 贪心算法不是对所有的问题都能得到整体最优解

1.Kruskal算法

  • 任给一个有n个顶点的连通网络 N = { V , E } N=\{V,E\} N={V,E}
    • 首先构造一个由这n个顶点组成、不含任何边的图 G = { V , N U L L } G=\{V,NULL\} G={V,NULL},其中每个顶点自成一个连通分量
    • 其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中
      • 如此重复,直到所有顶点在同一个连通分量上为止
    • 核心每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树
      • Kruskal算法是一种全局贪心的算法
  • 如何判断是否形成环?
    • 并查集
  • 在下图执行Kruskal算法的过程
    • 加了阴影的边属于不断增长的森林A
    • 该算法按照边的权重大小依次进行考虑,箭头指向的边是算法每一步考察的边
      • 如果该条边将两颗不同的树连接起来,它就被加入到森林里,从而完成对两棵树的合并
        请添加图片描述
W Kruskal(Self& minTree)
{size_t n = _vertexs.size();// 初始化minTreeminTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}priority_queue<Edge, vector<Edge>, greater<Edge>> minQueue;// 建堆排序for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (i < j && _matrix[i][j] != MAX_W){minQueue.push(Edge(i, j, _matrix[i][j]));}}}// 选出n-1条边size_t size = 0;W totalW = W();UnionFindSet ufs(n);while (!minQueue.empty()){Edge min = minQueue.top();minQueue.pop();// 判环 -> 并查集if (!ufs.InSameSet(min._srci, min._dsti)){cout << _vertexs[min._srci] << "->" \<< _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti); // 入集size++;totalW += min._w;}else{cout << "Forming Ring: ";cout << _vertexs[min._srci] << "->" \<< _vertexs[min._dsti] << ":" << min._w << endl;}}if (size == n - 1){return totalW;}else{return W();}
}

2.Prim算法

  • Prim算法的一个性质集合A中的边总是构成一棵树,这棵树从一个任意的根节点r开始,一直长大到覆盖V中的所有结点时为止
    • Prim算法思路天然避环
    • 算法每一步在连续集合A和A之外的结点的所有边中,选择一条轻量级边加入到A中
    • 本策略也属于贪心策略,因为每一步所加入的边都必须是使树的总权重增加量最小的边
      • Prim算法是一种局部贪心算法
  • 在下图执行Prim算法的过程
    • 初始的根节点为a,加阴影的边和黑色的结点都属于树A
    • 在算法的每一步,树中的结点就决定了图的一个切割,横跨该切割的一条轻量级边被加入到树中
    • **例如:**在途中第二步,该算法可以选择将边 ( b , c ) (b, c) (b,c)加入到树中,也可以将边 ( a , h ) (a, h) (a,h)加入到树中,因为这两条边都是横跨该切割的轻量级边
      请添加图片描述
W Prim(Self& minTree, const W& src)
{size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();// 初始化minTreeminTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}// true & false表示该元素是否在该集合内vector<bool> X(n, false);vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;// 从X->Y集合中连接的边里面选出最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minQueue;// 先把srci连接的边添加到队列中for (size_t i = 0; i < n; i++){if (_matrix[srci][i] != MAX_W){minQueue.push(Edge(srci, i, _matrix[srci][i]));}}size_t size = 0;W totalW = W();while (!minQueue.empty()){Edge min = minQueue.top();minQueue.pop();// 最小边的目标也在X集合,则构成环if (X[min._dsti]){cout << "Forming Ring:";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}else{cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);X[min._dsti] = true;Y[min._dsti] = false;size++;totalW += min._w;// 可能最小生成树已经生成,但是多了很多成环边,无须继续遍历if (size == n - 1){break;}// 将目标顶点连接的边加入到队列中for (size_t i = 0; i < n; i++){if (_matrix[min._dsti][i] != MAX_W && Y[i]){minQueue.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}}// 实际不一定存在最小生成树if (size == n - 1){return totalW;}else{return W();}
}

相关文章:

[C++][数据结构][图][中][图的遍历][最小生成树]详细讲解

目录 1.图的遍历1.广度优先遍历2.深度优先遍历 2.最小生成树1.Kruskal算法2.Prim算法 1.图的遍历 给定一个图G和其中任意一个顶点 v 0 v_0 v0​&#xff0c;从 v 0 v_0 v0​出发&#xff0c;沿着图中各边访问图中的所有顶点&#xff0c;且每个顶 点仅被遍历一次 “遍历”&…...

退市新规解读—财务类强制退市

一、退市风险警示&#xff1a;第一年触及相关指标 上市公司最近一个会计年度触及下列退市风险指标之一&#xff0c;公司股票或存托凭证被实施退市风险警示(*ST)&#xff1a; 第1项 组合类财务指标 仅发行A股或B股&#xff0c;最近一个会计年度或追溯重述后最近一个会计年度 …...

小程序的生命周期使用方法和应用场景

小程序生命周期 初始化&#xff08;App Launch&#xff09; • 触发时机&#xff1a;小程序首次启动时。 • 主要事件&#xff1a;onLaunch。 • 功能与适用场景&#xff1a; • 全局数据初始化&#xff1a;设置应用的全局状态和变量。 • 登录状态检查&#xff1a;判断用户是…...

什么是C++模块化系统?C++20的模块化系统。

C20引入的模块化系统是一种新的代码组织和编译机制&#xff0c;它旨在替代传统的头文件机制&#xff0c;提供更好的代码组织、更快的编译速度和更强的封装性。模块化系统的主要目标包括&#xff1a; 减少编译时间&#xff1a;通过减少冗余的头文件解析和宏定义传播&#xff0c…...

智慧校园-档案管理系统总体概述

智慧校园档案管理系统&#xff0c;作为教育信息化进程中的重要一环&#xff0c;它运用现代信息技术的力量&#xff0c;彻底改变了传统档案管理的面貌&#xff0c;为学校档案资源的收集、整理、存储、检索与利用开辟了全新的途径。这一系统全面覆盖学生、教职工、教学科研及行政…...

文心一言 VS 讯飞星火 VS chatgpt (290)-- 算法导论21.3 3题

三、给出一个包含 m 个 MAKE-SET 、UNION 和 FINDSET 操作的序列(其中有 n 个是 MAKE-SET 操作)&#xff0c;当仅使用按秩合并时&#xff0c;需要 Ω(mlgn) 的时间。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 在并查集&#xff08;Union-Find&#xff09;数…...

逻辑回归梯度推导

逻辑回归是一种广泛使用的分类算法&#xff0c;用于估计一个事件发生的概率。它是线性回归的扩展&#xff0c;通过sigmoid函数将线性回归的输出映射到[0, 1]区间&#xff0c;从而用于分类任务。 在逻辑回归中&#xff0c;我们使用对数似然损失函数&#xff08;log-likelihood l…...

Python 使用函数输出一个整数的逆序数

在Python中&#xff0c;你可以定义一个函数来输出一个整数的逆序数。这里有一个简单的实现方法&#xff1a; def reverse_integer(x):# 检查输入是否为整数if not isinstance(x, int):raise ValueError("Input must be an integer")# 将整数转换为字符串&#xff0c…...

【Linux】Wmware Esxi磁盘扩容

目录 一、概述 1.1 磁盘分区概念 1.2 LVM概念 二、扩容步骤 二、报错 一、概述 1.1 磁盘分区概念 在 Linux 中&#xff0c;每一个硬件设备都映射到一个系统的文件&#xff0c;对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。Linux把各种 IDE 设备分配了一个由 hd 前缀组成的文…...

树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标

今日继续学习树莓派4B 4G&#xff1a;&#xff08;Raspberry Pi&#xff0c;简称RPi或RasPi&#xff09; 本人所用树莓派4B 装载的系统与版本如下: 版本可用命令 (lsb_release -a) 查询: Opencv 版本是4.5.1&#xff1a; 今日学习 OpenCv定位物体实时位置&#xff0c;代码来源是…...

MySQL之如何定位慢查询

1、如何定位慢查询 1.1、使用开源工具 调试工具&#xff1a;Arthas 运维工具&#xff1a;Promethuss、Skywalking 1.2、MySQL自带慢日志 慢查询日志记录了所有执行时间超过指定参数&#xff08;long_query_time&#xff0c;单位&#xff1a;秒&#xff0c;默认10秒&#x…...

Open3D 删除点云中重复的点

目录 一、算法原理1、重叠点2、主要函数二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、重叠点 原始点云克隆一份   构造重叠区域   合并点云获得重叠点 2、主要…...

填报志愿选专业是兴趣重要还是前景重要?

进行专业评估&#xff0c;找到一个适合自己的专业是一件非常困难的事情。在进行专业选择时&#xff0c;身上理想化色彩非常严重的人&#xff0c;会全然不顾及他人的劝阻&#xff0c;义无反顾的以兴趣为主&#xff0c;选择自己热爱的专业。一些较多考虑他人建议&#xff0c;能听…...

python开发基础——day9 函数基础与函数参数

一、初识函数(function) 编程函数!数学函数&#xff0c;里面的是逻辑&#xff0c;功能&#xff0c;而不是套公式 编程函数的作用实现特定操作的一段代码 你现在请客&#xff0c;每个人都点同样的一份吃的&#xff0c;请100个人 1.薯条 2.上校鸡块 3.可乐 那…...

STM32——使用TIM输出比较产生PWM波形控制舵机转角

一、输出比较简介&#xff1a; 只有高级定时器和通用寄存器才有输入捕获/输出比较电路&#xff0c;他们有四个CCR&#xff08;捕获/比较寄存器&#xff09;&#xff0c;共用一个CNT&#xff08;计数器&#xff09;&#xff0c;而输出比较功能是用来输出PWM波形的。 红圈部分…...

第十五章 集合(set)(Python)

文章目录 前言一、集合 前言 集合&#xff08;set&#xff09;是一个无序的不重复元素序列。 一、集合 set {1, 2, 3, 4}...

面试-javaIO机制

1.BIO BIO&#xff1a;是传统的javaIO以及部分java.net下部分接口和类。例如&#xff0c;socket,http等&#xff0c;因为网络通信同样是IO行为。传统IO基于字节流和字符流进行操作。提供了我们最熟悉的IO功能&#xff0c;譬如基于字节流的InputStream 和OutputStream.基于字符流…...

在.NET Core中,config和ConfigureServices的区别和作用

在.NET Core中&#xff0c;config和ConfigureServices是两个不同的概念&#xff0c;它们在应用程序的启动和配置过程中扮演着不同的角色。 ConfigureServices&#xff1a;这是ASP.NET Core应用程序中的一个方法&#xff0c;位于Startup类的内部。它的作用是配置依赖注入(DI)容器…...

App Inventor 2 如何实现多个定时功能?

1、可以使用多个“计时器”组件。 2、也可以用一个计时器&#xff0c;定时一分钟。也就是一分钟就会触发一次事件执行&#xff0c;定义一个全局数字变量&#xff0c;在事件中递增&#xff0c;用逻辑判断这个变量的值即可完成多个想要定时的任务(о∀о) 代码块请参考&#xf…...

技术驱动的音乐变革:AI带来的产业重塑

&#x1f4d1;引言 近一个月来&#xff0c;随着几款音乐大模型的轮番上线&#xff0c;AI在音乐产业的角色迅速扩大。这些模型不仅将音乐创作的门槛降至前所未有的低点&#xff0c;还引发了一场关于AI是否会彻底颠覆音乐行业的激烈讨论。从初期的兴奋到现在的理性审视&#xff0…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

链式法则中 复合函数的推导路径 多变量“信息传递路径”

非常好&#xff0c;我们将之前关于偏导数链式法则中不能“约掉”偏导符号的问题&#xff0c;统一使用 二重复合函数&#xff1a; z f ( u ( x , y ) , v ( x , y ) ) \boxed{z f(u(x,y),\ v(x,y))} zf(u(x,y), v(x,y))​ 来全面说明。我们会展示其全微分形式&#xff08;偏导…...