当前位置: 首页 > news >正文

[C++][数据结构][图][中][图的遍历][最小生成树]详细讲解

目录

  • 1.图的遍历
    • 1.广度优先遍历
    • 2.深度优先遍历
  • 2.最小生成树
    • 1.Kruskal算法
    • 2.Prim算法


1.图的遍历

  • 给定一个图G和其中任意一个顶点 v 0 v_0 v0,从 v 0 v_0 v0出发,沿着图中各边访问图中的所有顶点,且每个顶 点仅被遍历一次
    • “遍历”:对结点进行某种操作的意思

1.广度优先遍历

请添加图片描述

  • **例如:**现在要找东西,假设有三个抽屉,东西在哪个抽屉不清楚,现在要将其找到,广度优先遍历的做法是:

    1. 先将三个抽屉打开,在最外层找一遍
    2. 将每个抽屉中红色的盒子打开,再找一遍
    3. 将红色盒子中绿色盒子打开,再找一遍
    4. 直到找完所有的盒子
      • 注意:每个盒子只能找一次,不能重复找
        请添加图片描述
  • 思考:如何防止节点被重复遍历?

    • 增加一个数组,用于标记是否入过队列,这样可以防止重复遍历
void BFS(const V& src)
{size_t srci = GetVertexIndex(src);queue<int> q;vector<bool> visited(_vertexs.size(), false); // 标记数组q.push(srci);visited[srci] = true;int levelSize = 1; // 控制每层出的数量while (!q.empty()){// 一层一层出for (size_t i = 0; i < levelSize; i++){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << " ";// 把front的邻接顶点入队列for (size_t j = 0; j < _vertexs.size(); j++){if (_matrix[front][j] != MAX_W && visited[j] == false){q.push(j);visited[j] = true;}}}cout << endl;levelSize = q.size();}
}

2.深度优先遍历

请添加图片描述

  • **例如:**现在要找东西,假设有三个抽屉,东西在哪个抽屉不清楚,现在要将其找到,深度优先遍历的做法是:
    1. 先将第一个抽屉打开,在最外层找一遍
    2. 将第一个抽屉中红盒子打开,在红盒子中找一遍
    3. 将红盒子中绿盒子打开,在绿盒子中找一遍
    4. 递归查找剩余的两个盒子
    • **深度优先遍历:**将一个抽屉一次性遍历完(包括该抽屉中包含的小盒子),再去递归遍历其他盒子
  • 如果给的图不是连通图,以某个顶点为起点没有遍历完成,怎么保证遍历完剩下的顶点
    • 在visited数组中找没有遍历过的顶点,再次进行遍历
void _DFS(size_t srci, vector<bool>& visited)
{cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;for (size_t i = 0; i < _vertexs.size(); i++){if (_matrix[i] != MAX_W && visited[i] == false){_DFS(i, visited);}}
}void DFS(const V& src)
{size_t srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);// 处理存在不连通的情况for (size_t i = 0; i < _vertexs.size(); i++){if (!visited[i]){_DFS(i, visited);}}
}

2.最小生成树

  • 连通图中的每一棵生成树,都是原图的一个极大无环子图,即:
    • 从其中删去任何一条边,生成树就不在连通
    • 反之,在其中引入任何一条新边,都会形成一条回路
  • 若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边,因此构造最小生成树的准则有三条:
    • 只能使用图中权值最小的边来构造最小生成树
      • 最小的成本让着N个顶点连通
    • 只能使用恰好n-1条边来连接图中的n个顶点
    • 选用的n-1条边不能构成回路
  • 构造最小生成树的方法:Kruskal算法和Prim算法,这两个算法都采用了逐步求解的贪心策略
  • 贪心算法:
    • 指在问题求解时,总是做出当前看起来最好的选择
      • 即:贪心算法做出的不是整体最优的的选择,而是某种意义上的局部最优解
    • 贪心算法不是对所有的问题都能得到整体最优解

1.Kruskal算法

  • 任给一个有n个顶点的连通网络 N = { V , E } N=\{V,E\} N={V,E}
    • 首先构造一个由这n个顶点组成、不含任何边的图 G = { V , N U L L } G=\{V,NULL\} G={V,NULL},其中每个顶点自成一个连通分量
    • 其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中
      • 如此重复,直到所有顶点在同一个连通分量上为止
    • 核心每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树
      • Kruskal算法是一种全局贪心的算法
  • 如何判断是否形成环?
    • 并查集
  • 在下图执行Kruskal算法的过程
    • 加了阴影的边属于不断增长的森林A
    • 该算法按照边的权重大小依次进行考虑,箭头指向的边是算法每一步考察的边
      • 如果该条边将两颗不同的树连接起来,它就被加入到森林里,从而完成对两棵树的合并
        请添加图片描述
W Kruskal(Self& minTree)
{size_t n = _vertexs.size();// 初始化minTreeminTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}priority_queue<Edge, vector<Edge>, greater<Edge>> minQueue;// 建堆排序for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (i < j && _matrix[i][j] != MAX_W){minQueue.push(Edge(i, j, _matrix[i][j]));}}}// 选出n-1条边size_t size = 0;W totalW = W();UnionFindSet ufs(n);while (!minQueue.empty()){Edge min = minQueue.top();minQueue.pop();// 判环 -> 并查集if (!ufs.InSameSet(min._srci, min._dsti)){cout << _vertexs[min._srci] << "->" \<< _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti); // 入集size++;totalW += min._w;}else{cout << "Forming Ring: ";cout << _vertexs[min._srci] << "->" \<< _vertexs[min._dsti] << ":" << min._w << endl;}}if (size == n - 1){return totalW;}else{return W();}
}

2.Prim算法

  • Prim算法的一个性质集合A中的边总是构成一棵树,这棵树从一个任意的根节点r开始,一直长大到覆盖V中的所有结点时为止
    • Prim算法思路天然避环
    • 算法每一步在连续集合A和A之外的结点的所有边中,选择一条轻量级边加入到A中
    • 本策略也属于贪心策略,因为每一步所加入的边都必须是使树的总权重增加量最小的边
      • Prim算法是一种局部贪心算法
  • 在下图执行Prim算法的过程
    • 初始的根节点为a,加阴影的边和黑色的结点都属于树A
    • 在算法的每一步,树中的结点就决定了图的一个切割,横跨该切割的一条轻量级边被加入到树中
    • **例如:**在途中第二步,该算法可以选择将边 ( b , c ) (b, c) (b,c)加入到树中,也可以将边 ( a , h ) (a, h) (a,h)加入到树中,因为这两条边都是横跨该切割的轻量级边
      请添加图片描述
W Prim(Self& minTree, const W& src)
{size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();// 初始化minTreeminTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix.resize(n);for (size_t i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}// true & false表示该元素是否在该集合内vector<bool> X(n, false);vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;// 从X->Y集合中连接的边里面选出最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minQueue;// 先把srci连接的边添加到队列中for (size_t i = 0; i < n; i++){if (_matrix[srci][i] != MAX_W){minQueue.push(Edge(srci, i, _matrix[srci][i]));}}size_t size = 0;W totalW = W();while (!minQueue.empty()){Edge min = minQueue.top();minQueue.pop();// 最小边的目标也在X集合,则构成环if (X[min._dsti]){cout << "Forming Ring:";cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;}else{cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;minTree._AddEdge(min._srci, min._dsti, min._w);X[min._dsti] = true;Y[min._dsti] = false;size++;totalW += min._w;// 可能最小生成树已经生成,但是多了很多成环边,无须继续遍历if (size == n - 1){break;}// 将目标顶点连接的边加入到队列中for (size_t i = 0; i < n; i++){if (_matrix[min._dsti][i] != MAX_W && Y[i]){minQueue.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}}// 实际不一定存在最小生成树if (size == n - 1){return totalW;}else{return W();}
}

相关文章:

[C++][数据结构][图][中][图的遍历][最小生成树]详细讲解

目录 1.图的遍历1.广度优先遍历2.深度优先遍历 2.最小生成树1.Kruskal算法2.Prim算法 1.图的遍历 给定一个图G和其中任意一个顶点 v 0 v_0 v0​&#xff0c;从 v 0 v_0 v0​出发&#xff0c;沿着图中各边访问图中的所有顶点&#xff0c;且每个顶 点仅被遍历一次 “遍历”&…...

退市新规解读—财务类强制退市

一、退市风险警示&#xff1a;第一年触及相关指标 上市公司最近一个会计年度触及下列退市风险指标之一&#xff0c;公司股票或存托凭证被实施退市风险警示(*ST)&#xff1a; 第1项 组合类财务指标 仅发行A股或B股&#xff0c;最近一个会计年度或追溯重述后最近一个会计年度 …...

小程序的生命周期使用方法和应用场景

小程序生命周期 初始化&#xff08;App Launch&#xff09; • 触发时机&#xff1a;小程序首次启动时。 • 主要事件&#xff1a;onLaunch。 • 功能与适用场景&#xff1a; • 全局数据初始化&#xff1a;设置应用的全局状态和变量。 • 登录状态检查&#xff1a;判断用户是…...

什么是C++模块化系统?C++20的模块化系统。

C20引入的模块化系统是一种新的代码组织和编译机制&#xff0c;它旨在替代传统的头文件机制&#xff0c;提供更好的代码组织、更快的编译速度和更强的封装性。模块化系统的主要目标包括&#xff1a; 减少编译时间&#xff1a;通过减少冗余的头文件解析和宏定义传播&#xff0c…...

智慧校园-档案管理系统总体概述

智慧校园档案管理系统&#xff0c;作为教育信息化进程中的重要一环&#xff0c;它运用现代信息技术的力量&#xff0c;彻底改变了传统档案管理的面貌&#xff0c;为学校档案资源的收集、整理、存储、检索与利用开辟了全新的途径。这一系统全面覆盖学生、教职工、教学科研及行政…...

文心一言 VS 讯飞星火 VS chatgpt (290)-- 算法导论21.3 3题

三、给出一个包含 m 个 MAKE-SET 、UNION 和 FINDSET 操作的序列(其中有 n 个是 MAKE-SET 操作)&#xff0c;当仅使用按秩合并时&#xff0c;需要 Ω(mlgn) 的时间。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 在并查集&#xff08;Union-Find&#xff09;数…...

逻辑回归梯度推导

逻辑回归是一种广泛使用的分类算法&#xff0c;用于估计一个事件发生的概率。它是线性回归的扩展&#xff0c;通过sigmoid函数将线性回归的输出映射到[0, 1]区间&#xff0c;从而用于分类任务。 在逻辑回归中&#xff0c;我们使用对数似然损失函数&#xff08;log-likelihood l…...

Python 使用函数输出一个整数的逆序数

在Python中&#xff0c;你可以定义一个函数来输出一个整数的逆序数。这里有一个简单的实现方法&#xff1a; def reverse_integer(x):# 检查输入是否为整数if not isinstance(x, int):raise ValueError("Input must be an integer")# 将整数转换为字符串&#xff0c…...

【Linux】Wmware Esxi磁盘扩容

目录 一、概述 1.1 磁盘分区概念 1.2 LVM概念 二、扩容步骤 二、报错 一、概述 1.1 磁盘分区概念 在 Linux 中&#xff0c;每一个硬件设备都映射到一个系统的文件&#xff0c;对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。Linux把各种 IDE 设备分配了一个由 hd 前缀组成的文…...

树莓派4B_OpenCv学习笔记15:OpenCv定位物体实时坐标

今日继续学习树莓派4B 4G&#xff1a;&#xff08;Raspberry Pi&#xff0c;简称RPi或RasPi&#xff09; 本人所用树莓派4B 装载的系统与版本如下: 版本可用命令 (lsb_release -a) 查询: Opencv 版本是4.5.1&#xff1a; 今日学习 OpenCv定位物体实时位置&#xff0c;代码来源是…...

MySQL之如何定位慢查询

1、如何定位慢查询 1.1、使用开源工具 调试工具&#xff1a;Arthas 运维工具&#xff1a;Promethuss、Skywalking 1.2、MySQL自带慢日志 慢查询日志记录了所有执行时间超过指定参数&#xff08;long_query_time&#xff0c;单位&#xff1a;秒&#xff0c;默认10秒&#x…...

Open3D 删除点云中重复的点

目录 一、算法原理1、重叠点2、主要函数二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、重叠点 原始点云克隆一份   构造重叠区域   合并点云获得重叠点 2、主要…...

填报志愿选专业是兴趣重要还是前景重要?

进行专业评估&#xff0c;找到一个适合自己的专业是一件非常困难的事情。在进行专业选择时&#xff0c;身上理想化色彩非常严重的人&#xff0c;会全然不顾及他人的劝阻&#xff0c;义无反顾的以兴趣为主&#xff0c;选择自己热爱的专业。一些较多考虑他人建议&#xff0c;能听…...

python开发基础——day9 函数基础与函数参数

一、初识函数(function) 编程函数!数学函数&#xff0c;里面的是逻辑&#xff0c;功能&#xff0c;而不是套公式 编程函数的作用实现特定操作的一段代码 你现在请客&#xff0c;每个人都点同样的一份吃的&#xff0c;请100个人 1.薯条 2.上校鸡块 3.可乐 那…...

STM32——使用TIM输出比较产生PWM波形控制舵机转角

一、输出比较简介&#xff1a; 只有高级定时器和通用寄存器才有输入捕获/输出比较电路&#xff0c;他们有四个CCR&#xff08;捕获/比较寄存器&#xff09;&#xff0c;共用一个CNT&#xff08;计数器&#xff09;&#xff0c;而输出比较功能是用来输出PWM波形的。 红圈部分…...

第十五章 集合(set)(Python)

文章目录 前言一、集合 前言 集合&#xff08;set&#xff09;是一个无序的不重复元素序列。 一、集合 set {1, 2, 3, 4}...

面试-javaIO机制

1.BIO BIO&#xff1a;是传统的javaIO以及部分java.net下部分接口和类。例如&#xff0c;socket,http等&#xff0c;因为网络通信同样是IO行为。传统IO基于字节流和字符流进行操作。提供了我们最熟悉的IO功能&#xff0c;譬如基于字节流的InputStream 和OutputStream.基于字符流…...

在.NET Core中,config和ConfigureServices的区别和作用

在.NET Core中&#xff0c;config和ConfigureServices是两个不同的概念&#xff0c;它们在应用程序的启动和配置过程中扮演着不同的角色。 ConfigureServices&#xff1a;这是ASP.NET Core应用程序中的一个方法&#xff0c;位于Startup类的内部。它的作用是配置依赖注入(DI)容器…...

App Inventor 2 如何实现多个定时功能?

1、可以使用多个“计时器”组件。 2、也可以用一个计时器&#xff0c;定时一分钟。也就是一分钟就会触发一次事件执行&#xff0c;定义一个全局数字变量&#xff0c;在事件中递增&#xff0c;用逻辑判断这个变量的值即可完成多个想要定时的任务(о∀о) 代码块请参考&#xf…...

技术驱动的音乐变革:AI带来的产业重塑

&#x1f4d1;引言 近一个月来&#xff0c;随着几款音乐大模型的轮番上线&#xff0c;AI在音乐产业的角色迅速扩大。这些模型不仅将音乐创作的门槛降至前所未有的低点&#xff0c;还引发了一场关于AI是否会彻底颠覆音乐行业的激烈讨论。从初期的兴奋到现在的理性审视&#xff0…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)

注&#xff1a;文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件&#xff1a;STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...

python基础语法Ⅰ

python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器&#xff0c;来进行一些算术…...