Day6: 344.反转字符串 541. 反转字符串II 卡码网:54.替换数字
题目344. 反转字符串 - 力扣(LeetCode)
void reverseString(vector<char>& s) {int len = s.size();int left = 0;int right = len - 1;while (left <= right){swap(s[left++], s[right--]);}return;}
题目541. 反转字符串 II - 力扣(LeetCode)
class Solution {
public:void reversek(string& s, int left, int right) {reverse(s.begin() + left, s.begin() + right);}string reverseStr(string s, int k) {//反转前k的函数int i = 0;int len = s.size();for (auto& e : s){i++;if (i == len ){if (i % (2 * k) >= k ){reversek(s, len - i % (2 * k), len - i % (2 * k) + k);}else if (i % (2 * k) == 0){reversek(s, 0, len - k);}else{reversek(s, len - i % (2 * k), len);}}else if (i %( 2 * k) == 0){reversek(s, i - 2*k, i - k );}}return s;}
};
题目54. 替换数字(第八期模拟笔试) (kamacoder.com)
#include<iostream>
using namespace std;int main()
{string s;cin>>s;//计算s中的数字数目int n=0;for(auto&e:s){if(e>='0'&&e<='9'){n++;}}//给s扩容int len=s.size();s.resize(s.size()+5*n);//双指针替换int pl=len-1;int pr=s.size()-1;while(pl<=pr&&pl>=0){if (s[pl] <= '9' &&s[ pl] >= '0'){s[pr--] = 'r';s[pr--] = 'e';s[pr--] = 'b';s[pr--] = 'm';s[pr--] = 'u';s[pr--] = 'n';pl--;}else{s[pr--] = s[pl--];}}cout<<s;return 0;
}
最后
注意resize reserve reverse
resize()
用于改变容器的大小,新添加的元素会被默认初始化,reverse()
用于反转容器中元素的顺序,而reserve()
用于预先分配容器的存储空间,提高插入大量元素的效率。
相关文章:

Day6: 344.反转字符串 541. 反转字符串II 卡码网:54.替换数字
题目344. 反转字符串 - 力扣(LeetCode) void reverseString(vector<char>& s) {int len s.size();int left 0;int right len - 1;while (left < right){swap(s[left], s[right--]);}return;} 题目541. 反转字符串 II - 力扣࿰…...
kubekey 离线安装高可用 kubernetes 集群
1. 准备环境 版本: kubernetes: v1.29.2 kubesphere: v3.4.1 kubekey: v3.1.1 说明: kubekey 只用于安装 kubernetes,因为 kubesphere 的配置在安装时经常需要变动,用 ks-installer 的 yaml 文件更好管理;ks-installe…...
大数据面试题之Hive(2)
目录 Hive的join操作原理,leftjoin、right join、inner join、outer join的异同? Hive如何优化join操作 Hive的mapjoin Hive语句的运行机制,例如包含where、having、group by、orderby,整个的执行过程? Hive使用的时候会将数据同步到HD…...
求推荐几款http可视化调试工具?
Postman 非常流行的API调试工具,适用于构建、测试和文档化APIs。它支持各种HTTP方法,有强大的集合和环境管理功能,以及代码生成能力。 BB-API 是一款旨在提升开发效率的工具,它专注于提供简约、完全免费且功能强大的HTTP模拟请…...

Python逻辑控制语句 之 判断语句--if else结构
1.if else 的介绍 if else :如果 ... 否则 .... 2.if else 的语法 if 判断条件: 判断条件成立,执行的代码 else: 判断条件不成立,执行的代码 (1)else 是关键字, 后⾯需要 冒号 (2)存在冒号…...

word2016中新建页面显示出来的页面没有页眉页脚,只显示正文部分。解决办法
问题描述:word2016中新建页面显示出来的页面没有页眉页脚,只显示正文部分。设置了页边距也不管用。 如图1 图1 解决: 点击“视图”——“多页”——“单页”,即可。如图2操作 图2 结果展示:如图3 图3...
8.javaSE基础进阶_泛型generics(无解通配符?+上下界统配符superextends)
文章目录 泛型generics一.泛型简介二.泛型类1.泛型方法 三.泛型接口四.泛型进阶1.*<?>无解通配符*2.上界通配符 < ? extends E>3.下界通配符 < ? super E>4.泛型擦除 泛型generics 一.泛型简介 JDK5引入,一种安全机制,编译时检测不匹配类型 特点: 将数…...

酒店客房管理系统(Java+MySQL)
技术栈 Java: 作为主要编程语言。Swing GUI: 用于开发图形用户界面。MySQL: 作为数据库管理系统。JDBC: 用于连接和操作MySQL数据库。 功能要点 管理登录认证 系统提供管理员登录认证功能。通过用户名和密码验证身份,确保只有授权的用户可以访问和管理酒店客房信…...

S32K3 --- Wdg(内狗) Mcal配置
前言 看门狗的作用是用来检测程序是否跑飞,进入死循环。我们需要不停地喂狗,来确保程序是正常运行的,一旦停止喂狗,意味着程序跑飞,超时后就会reset复位程序。 一、Wdg 1.1 WdgGeneral Wdg Disable Allowed : 启用此参数后,允许在运行的时候禁用看门狗 Wdg Enable User…...

LeetCode 算法:二叉树的层序遍历 c++
原题链接🔗:二叉树的层序遍历 难度:中等⭐️⭐️ 题目 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入:roo…...

博途TIA Portal「集成自动化软件」下载安装,TIA Portal 灵活多变的编程环境
在编程领域,博途TIA Portal以其卓越的编程工具和灵活多变的编程环境,为众多用户提供了前所未有的便利。这款软件不仅支持多种编程语言,如梯形图(Ladder Diagram)、功能块图(Function Block Diagram…...

火了10年的电脑监控软件有哪些?盘点8款热门的电脑监控软件
电脑监控软件领域经历了多年的发展,一些软件因为其稳定的功能、良好的用户体验和不断更新的技术支持,得以在市场上保持长期的热度和用户基础。以下是几款在过去十年里广受好评且持续流行的内网监控软件: 1.安企神:由河北安企神网络…...

入门Java爬虫:认识其基本概念和应用方法
Java爬虫初探:了解它的基本概念与用途,需要具体代码示例 随着互联网的快速发展,获取并处理大量的数据成为企业和个人不可或缺的一项任务。而爬虫(Web Scraping)作为一种自动化的数据获取方法,不仅能够快速…...

Flask新手入门(一)
前言 Flask是一个用Python编写的轻量级Web应用框架。它最初由Armin Ronacher作为Werkzeug的一个子项目在2010年开发出来。Werkzeug是一个综合工具包,提供了各种用于Web应用开发的工具和函数。自发布以来,Flask因其简洁和灵活性而迅速受到开发者的欢迎。…...

Grafana-11.0.0 在线部署教程
Grafana-11.0.0 在线部署教程 环境: 操作系统: ubuntugrafana版本: 11.0.0 (建议不要按照最新版)grafana要求的系统配置不高,建议直接部署在监控服务器上,比如zabbix服务器、prometheus服务器…...

pytorch-01
加载mnist数据集 one-hot编码实现 import numpy as np import torch x_train np.load("../dataset/mnist/x_train.npy") # 从网站提前下载数据集,并解压缩 y_train_label np.load("../dataset/mnist/y_train_label.npy") x torch.tensor(y…...

梦想CAD二次开发
1.mxdraw简介 mxdraw是一个HTML5 Canvas JavaScript框架,它在THREE.js的基础上扩展开发,为用户提供了一套在前端绘图更为方便,快捷,高效率的解决方案,mxdraw的实质为一个前端二维绘图平台。你可以使用mxdraw在画布上绘…...
Eureka的介绍与使用
Eureka 是 Netflix 开源的一款服务注册与发现组件,在微服务架构中扮演着重要的角色。 一、Eureka 的介绍 工作原理 服务注册:各个微服务在启动时,会向 Eureka Server 发送注册请求,将自身的服务名、实例名、IP 地址、端口等信息注…...

ChatGPT之母:AI自动化将取代人类,创意性工作或将消失
目录 01 AI取代创意性工作的担忧 1.1 CTO说了啥 02 AI已开始大范围取代人类 01 AI取代创意性工作的担忧 几天前的采访中,OpenAI的CTO直言,AI可能会扼杀一些本来不应该存在的创意性工作。 近来一篇报道更是印证了这一观点。国外科技媒体的老板Miller用…...
【深度学习驱动流体力学】湍流仿真到深度学习湍流预测
目录 一、湍流项目结构二、三个OpenFOAM湍流算例1. motorBike背景和目的文件结构和关键文件使用和应用湍流仿真深度学习湍流预测深度学习湍流预测的挑战和应用结合湍流仿真与深度学习2. pitzDaily背景和目的文件结构和关键文件使用和应用3. pitzDailyMapped背景和目的文件结构和…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...