当前位置: 首页 > news >正文

c++ 递归

递归函数是指在函数定义中调用自身的函数。C++语言也支持递归函数。

下面是一个使用递归函数计算阶乘的例子:

#include <iostream>
using namespace std;int factorial(int n) {// 基本情况,当 n 等于 0 或 1 时,阶乘为 1if (n == 0 || n == 1) {return 1;} else {// 递归调用,将问题分解为规模更小的问题return n * factorial(n - 1);}
}int main() {int n = 5;cout << "Factorial of " << n << " is " << factorial(n) << endl;return 0;
}

输出结果为:

Factorial of 5 is 120

在上面的例子中,factorial() 函数使用递归的方式来计算阶乘。当 n 等于 0 或 1 时,阶乘为 1,否则将问题分解为规模更小的问题,即计算 n-1 的阶乘,并将结果与 n 相乘返回。递归函数的执行会反复调用自身,直到达到基本情况才停止递归。

相关文章:

c++ 递归

递归函数是指在函数定义中调用自身的函数。C语言也支持递归函数。 下面是一个使用递归函数计算阶乘的例子&#xff1a; #include <iostream> using namespace std;int factorial(int n) {// 基本情况&#xff0c;当 n 等于 0 或 1 时&#xff0c;阶乘为 1if (n 0 || n…...

RedHat9 | podman容器

1、容器技术介绍 传统问题 应用程序和依赖需要一起安装在物理主机或虚拟机上的操作系统应用程序版本比当前操作系统安装的版本更低或更新两个应用程序可能需要某一软件的不同版本&#xff0c;彼此版本之间不兼容 解决方式 将应用程序打包并部署为容器容器是与系统的其他部分…...

边缘计算项目有哪些

边缘计算项目在多个领域得到了广泛的应用&#xff0c;以下是一些典型的边缘计算项目案例&#xff1a; 1. **智能交通系统**&#xff1a;通过在交通信号灯、监控摄像头等设备上部署边缘计算&#xff0c;可以实时分析交通流量&#xff0c;优化交通信号控制&#xff0c;减少拥堵&…...

计算fibonacci数列每一项时所需的递归调用次数

斐波那契数列是一个经典的数列&#xff0c;其中每一项是前两项的和&#xff0c;定义为&#xff1a; [ F(n) F(n-1) F(n-2) ] 其中&#xff0c;( F(0) 0 ) 和 ( F(1) 1 )。 对于计算斐波那契数列的第 ( n ) 项&#xff0c;如果使用简单的递归方法&#xff0c;其时间复杂度是…...

【教学类65-05】20240627秘密花园涂色书(中四班练习)

【教学类65-03】20240622秘密花园涂色书03&#xff08;通义万相&#xff09;&#xff08;A4横版1张&#xff0c;一大 68张纸136份&#xff09;-CSDN博客 背景需求: 打印以下几款秘密花园样式&#xff08;每款10份&#xff09;给中四班孩子玩一下&#xff0c;看看效果 【教学类…...

Python 学习之基础语法(一)

Python的语法基础主要包括以下几个方面&#xff0c;下面将逐一进行分点表示和归纳&#xff1a; 一、基本语法 1. 注释 a. 单行注释&#xff1a;使用#开头&#xff0c;例如# 这是一个单行注释。 b. 多行注释&#xff1a;使用三引号&#xff08;可以是三个单引号或三个双引号&…...

日志分析-windows系统日志分析

日志分析-windows系统日志分析 使用事件查看器分析Windows系统日志 cmd命令 eventvwr 筛选 清除日志、注销并重新登陆&#xff0c;查看日志情况 Windows7和Windowserver2008R2的主机日志保存在C:\Windows\System32\winevt\Logs文件夹下&#xff0c;Security.evtx即为W…...

【ARM】MDK工程切换高版本的编译器后出现error A1137E报错

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 解决工程从Compiler 5切换到Compiler 6进行编译时出现一些非语法问题上的报错。 2、 问题场景 对于一些使用Compiler 5进行编译的工程&#xff0c;要切换到Compiler 6进行编译的时候&#xff0c;原本无任何报错警告…...

深入 SSH:解锁本地转发、远程转发和动态转发的潜力

文章目录 前言一、解锁内部服务&#xff1a;SSH 本地转发1.1 什么是 SSH 本地转发1.2 本地转发应用场景 二、打开外部访问大门&#xff1a;SSH 远程转发2.1 什么是 SSH 远程转发2.2 远程转发应用场景 三、动态转发&#xff1a;SSH 让你拥有自己的 VPN3.1 什么是 SSH 动态转发3.…...

python如何把一个函数的返回值,当成这个函数的参数值

python如何把一个函数的返回值&#xff0c;当成这个函数的参数值 1. 递归调用 递归是一种函数自己调用自己的方法。在递归调用中&#xff0c;你可以将前一次调用的返回值作为下一次调用的参数。 def recursive_function(x):# 函数逻辑if 条件满足:return 结果else:return rec…...

【融合ChatGPT等AI模型】Python-GEE遥感云大数据分析、管理与可视化及多领域案例应用

随着航空、航天、近地空间遥感平台的持续发展&#xff0c;遥感技术近年来取得显著进步。遥感数据的空间、时间、光谱分辨率及数据量均大幅提升&#xff0c;呈现出大数据特征。这为相关研究带来了新机遇&#xff0c;但同时也带来巨大挑战。传统的工作站和服务器已无法满足大区域…...

SpringBoot: Eureka入门

1. IP列表 公司发展到一定的规模之后&#xff0c;应用拆分是无可避免的。假设我们有2个服务(服务A、服务B)&#xff0c;如果服务A要调用服务B&#xff0c;我们能怎么做呢&#xff1f;最简单的方法是让服务A配置服务B的所有节点的IP&#xff0c;在服务A内部做负载均衡调用服务B…...

Typescript 【实用教程】(2024最新版)含类型声明,类型断言,函数,接口,泛型等

简介 TypeScript 是 JavaScript 的超集&#xff0c;是 JavaScript&#xff08;弱类型语言&#xff09; 的强类型版本。 拥有类型机制文件后缀 .tsTypescript type ES6TypeScript 和 JavaScript 的关系类似 less 和 css 的关系TypeScript对 JavaScript 添加了一些扩展&#x…...

智慧校园-实训管理系统总体概述

智慧校园实训管理系统&#xff0c;专为满足高等教育与职业教育的特定需求而设计&#xff0c;它代表了实训课程管理领域的一次数字化飞跃。此系统旨在通过革新实训的组织结构、执行流程及评估标准&#xff0c;来增强学生的实践操作技能和教师的授课效率&#xff0c;为社会输送具…...

如何用GPT开发一个基于 GPT 的应用?

原文发自博客&#xff1a;GPT应用开发小记 如何开发一个基于 GPT 的应用&#xff1f;答案就在问题里&#xff0c;那就是用 GPT 来开发基于 GPT 的应用。本文以笔者的一个开源项目 myGPTReader 为例&#xff0c;分享我是如何基于 GPT 去开发这个系统的&#xff0c;这个系统的功能…...

大数据生态体系中各组件的区别面试题(更新)

一、MapReduce与Spark有什么区别&#xff1f; 1、处理方式: MapReduce基于磁盘处理数据&#xff0c;将中间结果保存到磁盘中,减少了内存占用&#xff0c;计算速度慢。 基于内存处理数据&#xff0c;将计算的中间结果保存到内存中&#xff0c;计算速度快。2、资源申请方式&…...

数字信号处理实验一(离散信号及离散系统的MATLAB编程实现)

实验要求&#xff1a; 离散信号及离散系统的MATLAB编程实现&#xff08;2学时&#xff09; 要求&#xff1a; 编写一程序&#xff0c;输出一定长度&#xff08;点数&#xff09;&#xff0c;具有一定幅度、&#xff08;角&#xff09;频率和初始相位的实&#xff08;或复&…...

数字图像处理专栏——introduction

Introduction: 数字图像处理技术是我在深入学习研究的方向之一。本科期间跟随导师做基于AndroidOpenCV的病虫识别app&#xff0c;因此入门&#xff0c;我也对该部分知识有进一步探索的欲望&#xff0c;但更多的是因该脚踏实地一步步记录&#xff0c;一步步成长。 本篇从数字图…...

Django 模版继承

1&#xff0c;设计母版页 Test/templates/6/base.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><!-- 修正了模板标签的全角字符问题 -->{% block title %}<title>这个是母版页</title>{…...

Apipost接口测试工具的原理及应用详解(一)

本系列文章简介&#xff1a; 随着软件行业的快速发展&#xff0c;API&#xff08;应用程序编程接口&#xff09;作为不同软件组件之间通信的桥梁&#xff0c;其重要性日益凸显。API的质量直接关系到软件系统的稳定性、性能和用户体验。因此&#xff0c;对API进行严格的测试成为…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...