什么是自然语言处理(NLP)?详细解读文本分类、情感分析和机器翻译的核心技术
什么是自然语言处理?
自然语言处理(Natural Language Processing,简称NLP)是人工智能的一个重要分支,旨在让计算机理解、解释和生成人类的自然语言。打个比方,你和Siri对话,或使用谷歌翻译翻译一句话,这背后都是NLP在发挥作用。说得简单点,NLP就是让计算机变得更“懂”我们说的话、写的文字。
常见的NLP任务
文本分类
文本分类是将一段文字归类到预先定义好的类别中。比如说,你的邮箱里有一个垃圾邮件过滤功能,它会自动识别并将垃圾邮件归类到“垃圾邮件”文件夹,这就是文本分类的一种应用。
例子:假设你有一个评论系统,用户可以发表评论。通过文本分类,你可以自动识别这些评论是关于产品质量的,还是关于配送服务的。这样,你可以更有针对性地处理用户反馈。
情感分析
情感分析是判断一段文字的情感倾向,即这段文字是表达积极情绪、消极情绪,还是中立情绪。这个任务广泛应用于社交媒体监测、市场调研等领域。
例子:你在网上看到一部电影的评论,通过情感分析技术,可以快速判断出观众对这部电影的整体评价是好是坏。这对于电影制作公司了解观众反馈是非常有帮助的。
机器翻译
机器翻译是将一种语言的文本翻译成另一种语言,比如将英文翻译成中文。谷歌翻译就是一个经典的例子。它能帮助我们跨越语言的障碍,使得全球范围内的信息交流更加便捷。
例子:你想阅读一篇法语的新闻,但你不懂法语。通过机器翻译技术,你可以迅速将这篇新闻翻译成你能理解的语言,从而获取所需的信息。
基于BERT和GPT的模型介绍
BERT:深度理解上下文
BERT(Bidirectional Encoder Representations from Transformers)是谷歌在2018年提出的一种语言模型。它的独特之处在于能双向理解句子,也就是说,它不仅从前往后读句子,还能从后往前读。这样一来,BERT在理解句子上下文时更为全面。
例子:假设有这样一句话:“我今天心情很好,因为天气很好。”传统的语言模型可能只关注到“心情很好”,而忽略了“因为天气很好”这个原因。而BERT能理解整句话的上下文,知道心情好是因为天气好。
BERT主要用于需要深度理解上下文的任务,比如问答系统和自然语言推理。比如,你问一个虚拟助手“谁是美国总统?”它能从文本中正确识别出相关信息并回答你。
GPT:生成流畅文本
GPT(Generative Pre-trained Transformer)是OpenAI推出的生成式预训练模型。它的优势在于能生成高质量的文本,适用于写文章、对话生成等任务。GPT模型在大量文本上进行预训练,能够模仿人类的写作风格和表达方式。
例子:你输入一句话,比如“写一篇关于自然语言处理的文章”,GPT就能生成一篇完整、流畅的文章,仿佛是一个真正的作者写的一样。更有趣的是,GPT还能进行对话模拟,让你感觉仿佛在和真人交流。
GPT已经被广泛应用于各种文本生成任务,例如自动新闻生成、智能客服系统、内容创作等。
总结
自然语言处理技术让计算机能够更好地理解和使用人类语言,从而实现许多有趣而实用的应用。无论是文本分类、情感分析,还是机器翻译,这些NLP任务都极大地方便了我们的生活。而基于BERT和GPT的模型,更是展示了NLP的强大潜力,让我们对未来充满期待。
希望通过这篇文章,能对自然语言处理有了一个更深入的了解。NLP虽然听起来很专业,但其实它已经融入到我们生活的方方面面。未来,随着技术的不断进步,NLP将带来更多令人惊喜和便利的应用。
相关文章:

什么是自然语言处理(NLP)?详细解读文本分类、情感分析和机器翻译的核心技术
什么是自然语言处理? 自然语言处理(Natural Language Processing,简称NLP)是人工智能的一个重要分支,旨在让计算机理解、解释和生成人类的自然语言。打个比方,你和Siri对话,或使用谷歌翻译翻译一…...
【linux】gcc快速入门教程
目录 一.gcc简介 二.gcc常用命令 一.gcc简介 gcc 是GNU Compiler Collection(GNU编译器套件)。就是一个编译器。编译一个源文件的时候可以直接使用,但是源文件数量太多时,就很不方便,于是就出现了make 工具 二.gcc…...

【多维动态规划】Leetcode 97. 交错字符串【中等】
交错字符串 给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。 两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串 子字符串 是字符串中连续的 非空 字符序列。 s s1 s2 … snt…...
【JavaScript脚本宇宙】精通前端开发:六大热门CSS框架详解
前端开发的利器:深入了解六大CSS框架 前言 在现代Web开发中,选择适合的前端框架和工具包是构建高效、响应式和美观的网站或应用程序的关键。本文将详细介绍六个广受欢迎的CSS框架:Bootstrap、Bulma、Tailwind CSS、Foundation、Materialize…...

开发技术-Java集合(List)删除元素的几种方式
文章目录 1. 错误的删除2. 正确的方法2.1 倒叙删除2.2 迭代器删除2.3 removeAll() 删除2.4 removeIf() 最简单的删除 3. 总结 1. 错误的删除 在写代码时,想将其中的一个元素删除,就遍历了 list ,使用了 remove(),发现效果并不是想…...
c++ 递归
递归函数是指在函数定义中调用自身的函数。C语言也支持递归函数。 下面是一个使用递归函数计算阶乘的例子: #include <iostream> using namespace std;int factorial(int n) {// 基本情况,当 n 等于 0 或 1 时,阶乘为 1if (n 0 || n…...

RedHat9 | podman容器
1、容器技术介绍 传统问题 应用程序和依赖需要一起安装在物理主机或虚拟机上的操作系统应用程序版本比当前操作系统安装的版本更低或更新两个应用程序可能需要某一软件的不同版本,彼此版本之间不兼容 解决方式 将应用程序打包并部署为容器容器是与系统的其他部分…...
边缘计算项目有哪些
边缘计算项目在多个领域得到了广泛的应用,以下是一些典型的边缘计算项目案例: 1. **智能交通系统**:通过在交通信号灯、监控摄像头等设备上部署边缘计算,可以实时分析交通流量,优化交通信号控制,减少拥堵&…...
计算fibonacci数列每一项时所需的递归调用次数
斐波那契数列是一个经典的数列,其中每一项是前两项的和,定义为: [ F(n) F(n-1) F(n-2) ] 其中,( F(0) 0 ) 和 ( F(1) 1 )。 对于计算斐波那契数列的第 ( n ) 项,如果使用简单的递归方法,其时间复杂度是…...

【教学类65-05】20240627秘密花园涂色书(中四班练习)
【教学类65-03】20240622秘密花园涂色书03(通义万相)(A4横版1张,一大 68张纸136份)-CSDN博客 背景需求: 打印以下几款秘密花园样式(每款10份)给中四班孩子玩一下,看看效果 【教学类…...
Python 学习之基础语法(一)
Python的语法基础主要包括以下几个方面,下面将逐一进行分点表示和归纳: 一、基本语法 1. 注释 a. 单行注释:使用#开头,例如# 这是一个单行注释。 b. 多行注释:使用三引号(可以是三个单引号或三个双引号&…...

日志分析-windows系统日志分析
日志分析-windows系统日志分析 使用事件查看器分析Windows系统日志 cmd命令 eventvwr 筛选 清除日志、注销并重新登陆,查看日志情况 Windows7和Windowserver2008R2的主机日志保存在C:\Windows\System32\winevt\Logs文件夹下,Security.evtx即为W…...

【ARM】MDK工程切换高版本的编译器后出现error A1137E报错
【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 解决工程从Compiler 5切换到Compiler 6进行编译时出现一些非语法问题上的报错。 2、 问题场景 对于一些使用Compiler 5进行编译的工程,要切换到Compiler 6进行编译的时候,原本无任何报错警告…...

深入 SSH:解锁本地转发、远程转发和动态转发的潜力
文章目录 前言一、解锁内部服务:SSH 本地转发1.1 什么是 SSH 本地转发1.2 本地转发应用场景 二、打开外部访问大门:SSH 远程转发2.1 什么是 SSH 远程转发2.2 远程转发应用场景 三、动态转发:SSH 让你拥有自己的 VPN3.1 什么是 SSH 动态转发3.…...
python如何把一个函数的返回值,当成这个函数的参数值
python如何把一个函数的返回值,当成这个函数的参数值 1. 递归调用 递归是一种函数自己调用自己的方法。在递归调用中,你可以将前一次调用的返回值作为下一次调用的参数。 def recursive_function(x):# 函数逻辑if 条件满足:return 结果else:return rec…...

【融合ChatGPT等AI模型】Python-GEE遥感云大数据分析、管理与可视化及多领域案例应用
随着航空、航天、近地空间遥感平台的持续发展,遥感技术近年来取得显著进步。遥感数据的空间、时间、光谱分辨率及数据量均大幅提升,呈现出大数据特征。这为相关研究带来了新机遇,但同时也带来巨大挑战。传统的工作站和服务器已无法满足大区域…...

SpringBoot: Eureka入门
1. IP列表 公司发展到一定的规模之后,应用拆分是无可避免的。假设我们有2个服务(服务A、服务B),如果服务A要调用服务B,我们能怎么做呢?最简单的方法是让服务A配置服务B的所有节点的IP,在服务A内部做负载均衡调用服务B…...

Typescript 【实用教程】(2024最新版)含类型声明,类型断言,函数,接口,泛型等
简介 TypeScript 是 JavaScript 的超集,是 JavaScript(弱类型语言) 的强类型版本。 拥有类型机制文件后缀 .tsTypescript type ES6TypeScript 和 JavaScript 的关系类似 less 和 css 的关系TypeScript对 JavaScript 添加了一些扩展&#x…...

智慧校园-实训管理系统总体概述
智慧校园实训管理系统,专为满足高等教育与职业教育的特定需求而设计,它代表了实训课程管理领域的一次数字化飞跃。此系统旨在通过革新实训的组织结构、执行流程及评估标准,来增强学生的实践操作技能和教师的授课效率,为社会输送具…...

如何用GPT开发一个基于 GPT 的应用?
原文发自博客:GPT应用开发小记 如何开发一个基于 GPT 的应用?答案就在问题里,那就是用 GPT 来开发基于 GPT 的应用。本文以笔者的一个开源项目 myGPTReader 为例,分享我是如何基于 GPT 去开发这个系统的,这个系统的功能…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...