MySQL 索引之外的相关查询优化总结
在这之前先说明几个概念:
1、驱动表和被驱动表:驱动表是主表,被驱动表是从表、非驱动表。驱动表和被驱动表并非根据 from 后面表名的先后顺序而确定,而是根据 explain 语句查询得到的顺序确定;展示在前面的是驱动表,后面的是非驱动表。
2、关联查询的类型非为:内连接(inner join)、左外连接(left join)、右外连接(right join)、全外连接(full join);
一、关联查询优化
1、整体效率比较:INLJ>BNLJ>SNLJ(这些值在EXPLAIN语句中Extra字段展示)
2、永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是 表行数"每行大小
#推荐
select t1.b,t2.* from t1 Istraight_join t2 on(t1.b=t2.b)where t2.id<=188;
#不推荐
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=108;
3、为被驱动表匹配的条件增加索引(减少内层表的循环匹配次数)
4、增大join buffer size的大小(一次缓存的数据越多,那么内层包的扫表次数就越少).
5、减少驱动表不必要的字段査询(字段越少,join buffer 所缓存的数据就越多);
实践得到以下结论:
结论1:对于内连接来说,查询优化器可以决定谁来作为驱动表,谁作为被驱动表出现
结论2:对于内连接来讲,如果表的连接条件中只能有一个字段有索引,则有索引的字段所在的表会被作为被驱动表
结论3:对于内连接来说,在两个表的连接条件都存在索引的情况下,会选择小表作为驱动表。小表驱动大表
关联查询优化细节可参考视频教程上部和下部
二、子查询优化和排序优化(相关视频教程)
1、子查询是 MySQL 的一项重要的功能,可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作 ,能够帮助我们通过一个 SQL 语句实现比较复杂的查询。但是子查询的执行效率不高。原因如下:
(1) 执行子查询时,MySQL需要为内层查询语句的查询结果建立一个临时表,然后外层查询语句从临时表中查询记录。查询完毕后,再撤销这些临时表。这样会消耗过多的 CPU 和 IO 资源,产生大量的慢查询。
(2) 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。
(3) 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
在MySQL中,可以使用连接(JOIN)查询来替代子查询。连接查询不需要建立临时表,其速度比子查询要快,如果查询中使用索引的话,性能就会更好。
2、在查询时不仅要在 WHERE 条件字段上加索引,还要在在 ORDER BY 字段上添加索引,因为在 MySQL 中,支持两种排序方式,分别是 FileSort 和 Index 排序。
◆ Index 排序中,索引可以保证数据的有序性,不需要再进行排序,效率更高。
◆ Filesort 排序则一般在内存中进行排序,占用 CPU 较多。如果待排结果较大,会产生临时文件 IO 到磁盘进行排序的情况,效率较低。
优化建议如下(这块的内容很详细,具体实践一定要看教程):
(1) SQL 中,可以在 WHERE 子句和 ORDER BY 子句中使用索引,目的是在 WHERE 子句中 避免全表扫描,在 ORDER BY 子句避免使用 FileSort 排序。当然,某些情况下全表扫描,或者 FileSort 排序不一定比索引慢。但总的来说,我们还是要避免,以提高查询效率。
(2) 尽量使用 Index 完成 ORDER BY 排序。如果 WHERE 和 ORDER BY 后面是相同的列就使用单索引列;如果不同就使用联合索引。
(3) 无法使用 Index 时,需要对 FileSort 方式进行调优。
三、GROUP BY优化和分页查询优化(相关视频教程)
1、group by 的优化策略主要包含以下六点
(1) group by 使用索引的原则几乎跟order by一致 ,group by 即使没有过滤条件用到索引,也可以直接使用索引。
(2) group by 先排序再分组,遵照索引建的最佳左前缀法则
(3) 当无法使用索引列,可以增大max_length_for_sort_data和sort_buffer_size参数的设置
(4) where效率高于having,能写在where限定的条件就不要写在having中了
(5) 减少使用 order by,和业务沟通能不排序就不排序,或将排序放到程序端去做。Order by、group by、distinct 这些语句较为耗费 CPU,数据库的CPU资源是极其宝贵的。
(6) 包含了order by、group by、distinct 这些查询的语句,where 条件过滤出来的结果集请保持在1000行以内,否则SQL会很慢。
2、一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是 limit 2000000,10此时需要MySQL排序前2000010 记录,仅仅返回2000000-2000010 的记录,其他记录丢弃,查询排序的代价非常大。
EXPLAIN SELECT *FROM student LIMIT 2000000,10;
优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a WHERE t.id = a.id;
优化思路二
该方案适用于主键自增的表,可以把 Limit 查询转换成某个位置的查询。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
四、覆盖索引的使用(相关视频教程)
1、什么是覆盖索引?
理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是,索引列+主键包含SELECT 到 FROM之间查询的列。
2、索引覆盖的好处
(1) 避免Innodb表进行索引的二次查询(回表)
Innodb是以聚集索引的顺序来存储的,对于Innodb来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据,在查找到相应的键值后,还需通过主键进行二次查询才能获取我们真实所需要的数据。在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次査询 ,减少了IO操作,提升了查询效率。
(2) 可以把随机 IO 变成顺序 IO 加快查询效率
由于覆盖索引是按键值的顺序存储的,对于 IO 密集型的范围査找来说,对比随机从磁盘读取每一行的数据 IO 要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的 IO 转变成索引查找的顺序IO 。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
3、索引覆盖的缺点
索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务 DBA,或者称为业务数据架构师的工作。
五、索引条件下推(ICP)(相关视频教程)
select * from a where key > 'z' and key like '%a'
以上查询语句在使用和不适用 ICP 两种场景如下
1、在不使用 ICP 索引扫描的过程:
storage层:只将满足index key条件的索引(key>‘z’)记录对应的整行记录取出,返回给server层,回表
server 层:对返回的数据,使用后面的where条件(key like ‘%a’)过滤,直至返回最后一行。
2、使用 ICP 扫描的过程:
storage层:首先将index key条件满足的索引(key>‘z’)记录区间确定,然后在索引上使用index filter进行(key like ‘%a’)过滤。将满足的index filter条件的索引记录才去回表取出整行记录返回server层。不满足index filter条件的索引记录丢弃,不回表、也不会返回server层。
server 层:对返回的数据,使用table filter条件做最后的过滤。
3、ICP 的开启/关闭
·默认情况下启用索引条件下推。可以通过设置系统变量 optimizer_switch 控制:index_condition_pushdown
#打开索引下推
SET optimizer switch='index condition pushdown=off':
#关闭索引下推
SET optimizer_switch='index_condition_pushdown=on';
4、ICP的使用条件
(1) 如果表访问的类型为 range、ref、eq_ref和ref_or_null 可以使用ICP
(2) ICP可以用于 InnoDB 和MyISAM 表,包括分区表 InnoDB和 MyISAM 表
(3) 对于 InnoDB 表,ICP 仅用于`二级索引’。ICP 的目标是减少全行读取次数,从而减少 /0 操作。
(4) 当SQL使用覆盖索引时,不支持ICP。为这种情况下使用ICP 不会减少 IO。
(5) 相关子查询的条件不能使用ICP
六、其他查询优化策略(相关视频教程)
1、EXISTS 和 IN 的区分
索引是个前提,其实选择与否还会要看表的大小。你可以将选择的标准理解为小表驱动大表。在这种方式下效率是最高的。
2、COUNT(*)、COUNT(1)与COUNT(具体字段)效率
前提:如果你要统计的是某个字段的非空数据行数,则另当别论,毕竟比较执行效率的前提是结果一样才可以。
环节1:COUNT(星)和COUNT(1)都是对所有结果进行COUNT,COUNT(星)和COUNT(1)本质上并没有区别(二者执行时间可能略有差别,不过你还是可以把它俩的执行效率看成是相等的)。如果有WHERE子句,则是对所有符合筛选条件的数据行进行统计;如果没有WHERE子句,则是对数据表的数据行数进行统计。
环节2:如果是MyISAM存储引擎,统计数据表的行数只需要O(1)的复杂度,这是因为每张MyISAM的数据表都有一个meta信息存储了row_count值,而一致性则是由表级锁来保证的。
如果是InnoDB存储引擎,因为InnoDB支持事务,采用行级锁和MVCC机制,所以无法像MyISAM一样,维护一个row_count变量,因此需要采用扫描全表,是O(n)的复杂度,进行循环+计数的方式来完成统计。
环节3:在InnoDB引擎中,如果采用COUNT(具体字段)来统计数据行数,要尽量采用二级索引。因为主键采用的索引是聚簇索引,聚簇索引包含的信息多,明显会大于二级索引(非聚簇索引)。对于COUNT(*)和COUNT(1)来说,它们不需要查找具体的行,只是统计行数,系统会自动采用占用空间更小的二级索引来进行统计。
如果有多个二级索引,会使用key_len小的二级索引进行扫描。当没有二级索引的时候,才会采用主键索引来进行统计。
3、关于SELECT(星)
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
(1) MySQL 在解析的过程中,会通过查询数据字典将"*"按序转换成所有列名,这会大大的耗费资源和时间。
(2) 无法使用覆盖索引
4、LIMIT 1 对优化的影响
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上LIMIT 1的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上LIMIT 1了。
5、多使用 COMMIT
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
(1) 回滚段上用于恢复数据的信息
(2) 被程序语句获得的锁
(3) redo / undo log buffer 中的空间
(4) 管理上述 3 种资源中的内部花费
相关文章:
MySQL 索引之外的相关查询优化总结
在这之前先说明几个概念: 1、驱动表和被驱动表:驱动表是主表,被驱动表是从表、非驱动表。驱动表和被驱动表并非根据 from 后面表名的先后顺序而确定,而是根据 explain 语句查询得到的顺序确定;展示在前面的是驱动表&am…...
EE trade:贵金属投资的优点及缺点
贵金属(如黄金、白银、铂金和钯金)一直以来都是重要的投资和避险工具。它们具有独特的物理和化学特性,广泛应用于各种行业,同时也被视为财富储备。在进行贵金属投资时,了解其优点和缺点对于做出明智的投资决策至关重要。 一、贵金属投资的优…...
python工作目录与文件目录
工作目录 文件目录:文件所在的目录 工作目录:执行python命令所在的目录 D:. | main.py | ---data | data.txt | ---model | | model.py | | train.py | | __init__.py | | | ---nlp | | | bert.py | …...
可信和可解释的大语言模型推理-RoG
大型语言模型(LLM)在复杂任务中表现出令人印象深刻的推理能力。然而,LLM在推理过程中缺乏最新的知识和经验,这可能导致不正确的推理过程,降低他们的表现和可信度。知识图谱(Knowledge graphs, KGs)以结构化的形式存储了…...
秋招季的策略与行动指南:提前布局,高效备战,精准出击
6月即将进入尾声,一年一度的秋季招聘季正在热火进行中。对于即将毕业的学生和寻求职业发展的职场人士来说,秋招是一个不容错过的黄金时期。 秋招的序幕通常在6月至9月间拉开,名企们纷纷开启网申的大门。在此期间,求职备战是一个系…...
Java并发编程-wait与notify详解及案例实战
文章目录 概述wait()notify()作用注意事项用wait与notify手写一个内存队列wait与notify的底层原理:monitor以及wait_setMonitor(监视器)Wait Set(等待集合)Wait() 原理Notify() / NotifyAll() 原理注意事项wait与notify在代码中使用时的注意事项总结案例实战:基于wait与not…...
204.贪心算法:分发饼干(力扣)
以下来源于代码随想录 class Solution { public:int findContentChildren(vector<int>& g, vector<int>& s) {// 对孩子的胃口进行排序sort(g.begin(), g.end());// 对饼干的尺寸进行排序sort(s.begin(), s.end());int index s.size() - 1; // 从最大的饼…...
AI奥林匹克竞赛:Claude-3.5-Sonnet对决GPT-4o,谁是最聪明的AI?
目录 实验设置 评估对象 评估方法 结果与分析 针对学科的细粒度分析 GPT-4o vs. Claude-3.5-Sonnet GPT-4V vs. Gemini-1.5-Pro 结论 AI技术日新月异,Anthropic公司最新发布的Claude-3.5-Sonnet因在知识型推理、数学推理、编程任务及视觉推理等任务上设立新…...
【C++】const修饰成员函数
const修饰成员函数 常函数: 成员函数后加const后我们称为这个函数为常函数 常函数内不可以修改成员属性 成员属性声明时加关键字mutable后,在常函数中依然可以修改 class Animal { public:void fun1(){//这是一个普通的成员函数 }void fun2…...
基于模糊神经网络的时间序列预测(以hopkinsirandeath数据集为例,MATLAB)
模糊神经网络从提出发展到今天,主要有三种形式:算术神经网络、逻辑模糊神经网络和混合模糊神经网络。算术神经网络是最基本的,它主要是对输入量进行模糊化,且网络结构中的权重也是模糊权重;逻辑模糊神经网络的主要特点是模糊权值可…...
Java web应用性能分析之【prometheus监控K8s指标说明】
常规k8s的监控指标 单独 1、集群维度 集群状态集群节点数节点状态(正常、不可达、未知)节点的资源使用率(CPU、内存、IO等) 2、应用维度 应用响应时间 应用的错误率 应用的请求量 3、系统和集群组件维度 API服务器状态控…...
Spring Boot中的应用配置文件管理
Spring Boot中的应用配置文件管理 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨Spring Boot中的应用配置文件管理。在现代的软件开发中&am…...
SCCB协议介绍,以及与IIC协议对比
在之前的文章里已经介绍了IIC协议:iic通信协议 这篇内容主要介绍一下SCCB协议。 文章目录 SCCB协议:SCCB时序图iic时序图SCCB时序 VS IIC时序 总:SCCB协议常用在摄像头配置上面,例如OV5640摄像头,和IIC协议很相似&…...
K8S基础简介
用于自动部署,扩展和管理容器化应用程序的开源系统。 功能: 服务发现和负载均衡; 存储编排; 自动部署和回滚; 自动二进制打包; 自我修复; 密钥与配置管理; 1. K8S组件 主从方式架…...
Studying-代码随想录训练营day24| 93.复原IP地址、78.子集、90.子集II
第24天,回溯算法part03,牢记回溯三部曲,掌握树形结构结题方法💪 目录 93.复原IP地址 78.子集 90.子集II 总结 93.复原IP地址 文档讲解:代码随想录复原IP地址 视频讲解:手撕复原IP地址 题目࿱…...
2024《汽车出海全产业数据安全合规发展白皮书》下载
随着中国制造向中国智造目标的迈进,中国汽车正以前所未有的速度和质量,在全球市场上开疆拓土。不过,在中国汽车加快出海步伐的过程中,数据安全合规风险管理成为车企不容忽视的课题。 6月25日,在中国(上海&…...
nvm安装以及idea下vue启动项目过程和注意事项
注意1:nvm版本不要太低,1.1.7会出现下面这个问题,建议1.1.10及其以上版本 然后安装这个教程安装nvm和node.js 链接: nvm安装教程(一篇文章所有问题全搞定,非常详细) 注意2:上面的教程有一步骤…...
Java SPI服务发现与扩展的利器
Java中,为了实现模块之间的解耦和可扩展性,我们常常需要一种机制来动态加载和替换实现。Java SPI就是这样一种机制,它允许我们在不修改原有代码的情况下,为接口添加新的实现,并在运行时动态加载它们。 SPI,…...
Ansible的Playbook
Playbook 特点 playbook 剧本是由一个或多个"play"组成的列表play的主要功能在于将预定义的一组主机,装扮成事先通过ansible中的task定义好的任务角色。Task实际是调用ansible的一个module,将多个play组织在一个playbook中,即可以让…...
多平台自动养号【开心版】偷偷使用就行了!
大家好,今天我无意间发现了一款【多平台自动养号工具】,看了一下里面的功能还是挺全面的,包含了【抖音,快手,小红薯】还有一些截流功能 虽然这款工具功能强大,但美中不足的是需要付费的。但别担心…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
stm32进入Infinite_Loop原因(因为有系统中断函数未自定义实现)
这是系统中断服务程序的默认处理汇编函数,如果我们没有定义实现某个中断函数,那么当stm32产生了该中断时,就会默认跑这里来了,所以我们打开了什么中断,一定要记得实现对应的系统中断函数,否则会进来一直循环…...
