240627_关于CNN中图像维度变化问题
240627_关于CNN中图像维度变化问题
在学习一些经典模型时,其中得维度变化关系总搞不太明白,集中学习了以下,在此作以梳理总结:
一般来说涉及到的维度变换都是四个维度,当batch size=4,图像尺寸为640*640,RGB三通道时,此时维度就是4×3×640×640。3的意思是RGB三通道,如果你传入的图像是单通道图像,此时维度就是4×1×640×640。
当然有些图你看着是一个黑白图,但是他还是有可能是一张RGB三通道图,具体怎么区分呢。右击图片打开属性,打开详细信息,里面可以看到位深度,位深度为24,则为RGB图,位深度为8,则为单通道图。此处就是一个坑,图像分割任务中,标签往往是单通道图,但是有时从网上找到的数据集看起来是黑白的,但是实际训练就会报错,查看了才发现位深度是24,需要用python代码进行修改,具体跳转240627_图像24位深度(RGB图)转为8位深度(单通道图)-CSDN博客。
当维度是三维时,就是没有batch size这个维度,可以理解为这个维度指的是其中一张图。
标准卷积
以U_Net为例

# U_Net网络的简单结构,就写了一层,其他同理
block1=block_down(3,64)
x1_use=block1(x) # torch.Size([3, 64, 568, 568])
x1=self.maxpool(x1_use) # torch.Size([3, 64, 284, 284])'''
block down中卷积核的定义为
self.conv1 = nn.Conv2d(inp_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
'''
卷积输出的计算公式为
h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightin−heightkernel+2∗padding)+1
w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthin−widthkernel+2∗padding)+1
输入3张572572的RGB图像(3×3×572×572),经过3×3卷积(padding=0,stride=1),此时的计算公式为
h e i g h t o u t = w i d t h o u t = ( 572 − 3 + 2 ∗ 0 ) 1 + 1 = 570 height_{out}=width_{out}=\frac{(572-3+2*0)}{1}+1=570 heightout=widthout=1(572−3+2∗0)+1=570
一共经过两层之后尺寸为568568,因为kernel的out_channel定义的是64,所以一共有64个卷积核,输出通道为64,此时维度为3×64×568×568。
然后经过最大池化层,尺寸除以2,通道数不变,此时维度为3×64×284×284
其余层数同理
| batch_size | height | width | in_channel | out_channel | |
|---|---|---|---|---|---|
| Input | 3 | 572 | 572 | 3 | |
| Kernel | 3 | 3 | 3 | 64 | |
| Output | 3 | 570 | 570 | 64 |
1×1卷积
以ResNet50为例

我们看shortcuts分支(右半弧线分支),这个分支输入一张维度为1×256×56×56的图像,经过一个1×1卷积(stride=2,padding=0),此时经过上述公式计算,尺寸为28,输出通道数为512。
| batch_size | height | width | in_channel | out_channel | |
|---|---|---|---|---|---|
| Input | 1 | 56 | 56 | 256 | |
| Kernel | 1 | 1 | 256 | 512 | |
| Output | 1 | 28 | 28 | 512 |
当然也有特殊情况,1×1卷积,卷积核尺寸为1,步长为1,padding=0,通过以上公式可以计算出来尺寸不会发生变化,但通道数可以发生改变,由卷积核数量决定。
全连接层
全连接层就是把所有的像素点都摊开,摊成尺寸为1×1,通道数好多好多,其卷积核尺寸和输入尺寸一致,输出 通道数就是卷积核个数
| batch_size | height | width | in_channel | out_channel | |
|---|---|---|---|---|---|
| Input | 1 | 56 | 56 | 256 | |
| Kernel | 56 | 56 | 256 | 512 | |
| Output | 1 | 1 | 1 | 512 |
总结
输出通道数就是卷积核个数
卷积后尺寸计算公式就是
h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightin−heightkernel+2∗padding)+1
w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthin−widthkernel+2∗padding)+1
相关文章:
240627_关于CNN中图像维度变化问题
240627_关于CNN中图像维度变化问题 在学习一些经典模型时,其中得维度变化关系总搞不太明白,集中学习了以下,在此作以梳理总结: 一般来说涉及到的维度变换都是四个维度,当batch size4,图像尺寸为640*640&a…...
食品行业怎么用JSON群发短信
食品作为日常生活不可缺少的元素,市场需求是很稳定的,但是份额就那么多,商家都要来抢占的话,就需要运营推广各凭本事,市场运营中选择合适的推广方式,可以增加店铺销售额,很多实体店或商城都会建…...
MySQL高级-MVCC-隐藏字段
文章目录 1、介绍2、测试2.1、进入服务器中的 /var/lib/mysql/atguigu/2.2、查看有主键的表 stu2.3、查看没有主键的表 employee2.3.1、创建表 employee2.3.2、查看表结构及其其中的字段信息 1、介绍 ---------------- | id | age | name | ---------------- | 1 | 1 | Js…...
探索PcapPlusPlus开源库:网络数据包处理与性能优化
文章目录 0. 本文概要1. PcapPlusPlus介绍1.1 概述1.2主要特性和功能1.3 PcapPlusPlus 主要模块关系和依赖1.4 网络协议层处理过程 2. 实例2.1 基于 PcapPlusPlus 的应用程序设计和封装流程:2.2 多线程示例代码2.3 代码说明: 3. 程序性能进一步优化3.1 避…...
深入理解SSH:网络安全的守护者
在当今数字化时代,网络安全已成为全球关注的焦点。随着网络攻击手段的不断升级,保护数据传输的安全性变得尤为重要。SSH(Secure Shell)作为一种安全的网络协议,为远程登录和网络服务提供了强大的安全保障,成…...
DDD学习笔记四
领域模型的构建 基础领域模型的基本组成有名称、属性、关联、职责、事件和异常 发掘领域概念3种策略: 1)学习已有系统,重用已有模型 2)使用分类标签。分类标签来源于领域,需要我们研究一些资料并做一些提炼。从采用5W…...
Head First设计模式中的典型设计模式解析与案例分析
Head First设计模式中的典型设计模式解析与案例分析 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 《Head First设计模式》是一本广受欢迎的书籍,…...
iptables 防火墙(一)
iptables 防火墙(一) 一、Linux 防火墙基础防火墙分类 二、iptables 的表、链结构规则表规则链数据包过滤的匹配流程 三、编写防火墙规则iptables 的安装iptables的基本语法规则的匹配条件通用匹配隐含匹配显式匹配 四、总结 在网络安全的世界里…...
数据库物理结构设计-定义数据库模式结构(概念模式、用户外模式、内模式)、定义数据库、物理结构设计策略
一、引言 如何基于具体的DBMS产品,为数据库逻辑结构设计的结果,即关系数据库模式,制定适合应用要求的物理结构 1、在设计数据库物理结构前,数据库设计人员首先 要充分了解所用的DBMS产品的功能、性能和特点,包括提供…...
QT加载安装外围依赖库的翻译文件后翻译失败的现象分析:依赖库以饿汉式的形式暴露单例接口导致该现象的产生
1、前提说明 VS2019 QtClassLibaryDll是动态库,QtWidgetsApplication4是应用程序。 首先明确:动态库以饿汉式的形式进行单例接口暴露; 然后,应用程序加载动态库的翻译文件并进行全局安装; // ...QTranslator* trans = new QTranslator();//qDebug() << trans->…...
13_旷视轻量化网络--ShuffleNet V2
回顾一下ShuffleNetV1:08_旷视轻量化网络--ShuffleNet V1-CSDN博客 1.1 简介 ShuffleNet V2是在2018年由旷视科技的研究团队提出的一种深度学习模型,主要用于图像分类和目标检测等计算机视觉任务。它是ShuffleNet V1的后续版本,重点在于提供更高效的模…...
Linux系统编程--进程间通信
目录 1. 介绍 1.1 进程间通信的目的 1.2 进程间通信的分类 2. 管道 2.1 什么是管道 2.2 匿名管道 2.2.1 接口 2.2.2 步骤--以父子进程通信为例 2.2.3 站在文件描述符角度-深度理解 2.2.4 管道代码 2.2.5 读写特征 2.2.6 管道特征 2.3 命名管道 2.3.1 接口 2.3.2…...
docker-本地部署-后端
前置条件 后端文件 这边是一个简单项目的后端文件目录 docker服务 镜像文件打包 #命令行 docker build -t author/chatgpt-ai-app:1.0 -f ./Dockerfile .红框是docker所在文件夹 author:docker用户名chatgpt-ai-app:打包的镜像文件名字:1.0 &#…...
TLS + OpenSSL + Engine + PKCS#11 + softhsm2 安全通信
引擎库路径只有在 /lib 下才能被 "LOAD" 识别到,OpenSSL的ReadMe给的示例在/lib,大概是在构建OpenSSL时默认的configure指定了lib路径 // #define PKCS11_ENGINE_PATH "/usr/lib/x86_64-linux-gnu/engines-1.1/pkcs11.so" #define …...
Unity实现简单的MVC架构
文章目录 前言MVC基本概念示例流程图效果预览后话 前言 在Unity中,MVC(Model-View-Controller)框架是一种架构模式,用于分离游戏的逻辑、数据和用户界面。MVC模式可以帮助开发者更好地管理代码结构,提高代码的可维护性…...
【简单讲解下OneFlow深度学习框架】
🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…...
FastGPT 调用Qwen 测试Hello world
Ubuntu 安装Qwen/FastGPT_fastgpt message: core.chat.chat api is error or u-CSDN博客 参考上面文档 安装FastGPT后 登录, 点击右上角的 新建 点击 这里,配置AI使用本地 ollama跑的qwen模型 问题:树上有3只鸟,开了一枪&#…...
Golang-GMP
GMP调度 golang-GMP语雀笔记整理 GMP调度设计目的,为何设计GMP?GMP的底层实现几个核心数据结构GMP调度流程 设计目的,为何设计GMP? 无论是多进程、多线程目的都是为了并发提高cpu的利用率,但多进程、多线程都存在局限性。比如多进程通过时…...
【PythonWeb开发】Flask自定义模板路径和静态资源路径
在大型的 Flask 项目中,确实可能会有多个子应用(Blueprints),每个子应用可能都有自己的静态文件和模板。为了更好地管理和组织这些资源,可以使用static_folder 和template_folder 属性来统一管理。必须同时设置好主应用…...
Java对象创建过程
在日常开发中,我们常常需要创建对象,那么通过new关键字创建对象的执行中涉及到哪些流程呢?本文主要围绕这个问题来展开。 类的加载 创建对象时我们常常使用new关键字。如下 ObjectA o new ObjectA();对虚拟机来讲首先需要判断ObjectA类的…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
