当前位置: 首页 > news >正文

240627_关于CNN中图像维度变化问题

240627_关于CNN中图像维度变化问题

在学习一些经典模型时,其中得维度变化关系总搞不太明白,集中学习了以下,在此作以梳理总结:

一般来说涉及到的维度变换都是四个维度,当batch size=4,图像尺寸为640*640,RGB三通道时,此时维度就是4×3×640×640。3的意思是RGB三通道,如果你传入的图像是单通道图像,此时维度就是4×1×640×640。

当然有些图你看着是一个黑白图,但是他还是有可能是一张RGB三通道图,具体怎么区分呢。右击图片打开属性,打开详细信息,里面可以看到位深度,位深度为24,则为RGB图,位深度为8,则为单通道图。此处就是一个坑,图像分割任务中,标签往往是单通道图,但是有时从网上找到的数据集看起来是黑白的,但是实际训练就会报错,查看了才发现位深度是24,需要用python代码进行修改,具体跳转240627_图像24位深度(RGB图)转为8位深度(单通道图)-CSDN博客。

当维度是三维时,就是没有batch size这个维度,可以理解为这个维度指的是其中一张图。

标准卷积

以U_Net为例

在这里插入图片描述

# U_Net网络的简单结构,就写了一层,其他同理
block1=block_down(3,64)
x1_use=block1(x) # torch.Size([3, 64, 568, 568])
x1=self.maxpool(x1_use) # torch.Size([3, 64, 284, 284])'''
block down中卷积核的定义为
self.conv1 = nn.Conv2d(inp_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
'''

卷积输出的计算公式为

h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightinheightkernel+2padding)+1

w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthinwidthkernel+2padding)+1

输入3张572572的RGB图像(3×3×572×572),经过3×3卷积(padding=0,stride=1),此时的计算公式为
h e i g h t o u t = w i d t h o u t = ( 572 − 3 + 2 ∗ 0 ) 1 + 1 = 570 height_{out}=width_{out}=\frac{(572-3+2*0)}{1}+1=570 heightout=widthout=1(5723+20)+1=570
一共经过两层之后尺寸为568
568,因为kernel的out_channel定义的是64,所以一共有64个卷积核,输出通道为64,此时维度为3×64×568×568。

然后经过最大池化层,尺寸除以2,通道数不变,此时维度为3×64×284×284

其余层数同理

batch_sizeheightwidthin_channelout_channel
Input35725723
Kernel33364
Output357057064

1×1卷积

以ResNet50为例

image-20240627202246263

我们看shortcuts分支(右半弧线分支),这个分支输入一张维度为1×256×56×56的图像,经过一个1×1卷积(stride=2,padding=0),此时经过上述公式计算,尺寸为28,输出通道数为512。

batch_sizeheightwidthin_channelout_channel
Input15656256
Kernel11256512
Output12828512

当然也有特殊情况,1×1卷积,卷积核尺寸为1,步长为1,padding=0,通过以上公式可以计算出来尺寸不会发生变化,但通道数可以发生改变,由卷积核数量决定。

全连接层

全连接层就是把所有的像素点都摊开,摊成尺寸为1×1,通道数好多好多,其卷积核尺寸和输入尺寸一致,输出 通道数就是卷积核个数

batch_sizeheightwidthin_channelout_channel
Input15656256
Kernel5656256512
Output111512

总结

输出通道数就是卷积核个数

卷积后尺寸计算公式就是

h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightinheightkernel+2padding)+1

w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthinwidthkernel+2padding)+1

相关文章:

240627_关于CNN中图像维度变化问题

240627_关于CNN中图像维度变化问题 在学习一些经典模型时,其中得维度变化关系总搞不太明白,集中学习了以下,在此作以梳理总结: 一般来说涉及到的维度变换都是四个维度,当batch size4,图像尺寸为640*640&a…...

食品行业怎么用JSON群发短信

食品作为日常生活不可缺少的元素,市场需求是很稳定的,但是份额就那么多,商家都要来抢占的话,就需要运营推广各凭本事,市场运营中选择合适的推广方式,可以增加店铺销售额,很多实体店或商城都会建…...

MySQL高级-MVCC-隐藏字段

文章目录 1、介绍2、测试2.1、进入服务器中的 /var/lib/mysql/atguigu/2.2、查看有主键的表 stu2.3、查看没有主键的表 employee2.3.1、创建表 employee2.3.2、查看表结构及其其中的字段信息 1、介绍 ---------------- | id | age | name | ---------------- | 1 | 1 | Js…...

探索PcapPlusPlus开源库:网络数据包处理与性能优化

文章目录 0. 本文概要1. PcapPlusPlus介绍1.1 概述1.2主要特性和功能1.3 PcapPlusPlus 主要模块关系和依赖1.4 网络协议层处理过程 2. 实例2.1 基于 PcapPlusPlus 的应用程序设计和封装流程:2.2 多线程示例代码2.3 代码说明: 3. 程序性能进一步优化3.1 避…...

深入理解SSH:网络安全的守护者

在当今数字化时代,网络安全已成为全球关注的焦点。随着网络攻击手段的不断升级,保护数据传输的安全性变得尤为重要。SSH(Secure Shell)作为一种安全的网络协议,为远程登录和网络服务提供了强大的安全保障,成…...

DDD学习笔记四

领域模型的构建 基础领域模型的基本组成有名称、属性、关联、职责、事件和异常 发掘领域概念3种策略: 1)学习已有系统,重用已有模型 2)使用分类标签。分类标签来源于领域,需要我们研究一些资料并做一些提炼。从采用5W…...

Head First设计模式中的典型设计模式解析与案例分析

Head First设计模式中的典型设计模式解析与案例分析 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 《Head First设计模式》是一本广受欢迎的书籍&#xff0c…...

iptables 防火墙(一)

iptables 防火墙(一) 一、Linux 防火墙基础防火墙分类 二、iptables 的表、链结构规则表规则链数据包过滤的匹配流程 三、编写防火墙规则iptables 的安装iptables的基本语法规则的匹配条件通用匹配隐含匹配显式匹配 四、总结 在网络安全的世界里&#xf…...

数据库物理结构设计-定义数据库模式结构(概念模式、用户外模式、内模式)、定义数据库、物理结构设计策略

一、引言 如何基于具体的DBMS产品,为数据库逻辑结构设计的结果,即关系数据库模式,制定适合应用要求的物理结构 1、在设计数据库物理结构前,数据库设计人员首先 要充分了解所用的DBMS产品的功能、性能和特点,包括提供…...

QT加载安装外围依赖库的翻译文件后翻译失败的现象分析:依赖库以饿汉式的形式暴露单例接口导致该现象的产生

1、前提说明 VS2019 QtClassLibaryDll是动态库,QtWidgetsApplication4是应用程序。 首先明确:动态库以饿汉式的形式进行单例接口暴露; 然后,应用程序加载动态库的翻译文件并进行全局安装; // ...QTranslator* trans = new QTranslator();//qDebug() << trans->…...

13_旷视轻量化网络--ShuffleNet V2

回顾一下ShuffleNetV1:08_旷视轻量化网络--ShuffleNet V1-CSDN博客 1.1 简介 ShuffleNet V2是在2018年由旷视科技的研究团队提出的一种深度学习模型&#xff0c;主要用于图像分类和目标检测等计算机视觉任务。它是ShuffleNet V1的后续版本&#xff0c;重点在于提供更高效的模…...

Linux系统编程--进程间通信

目录 1. 介绍 1.1 进程间通信的目的 1.2 进程间通信的分类 2. 管道 2.1 什么是管道 2.2 匿名管道 2.2.1 接口 2.2.2 步骤--以父子进程通信为例 2.2.3 站在文件描述符角度-深度理解 2.2.4 管道代码 2.2.5 读写特征 2.2.6 管道特征 2.3 命名管道 2.3.1 接口 2.3.2…...

docker-本地部署-后端

前置条件 后端文件 这边是一个简单项目的后端文件目录 docker服务 镜像文件打包 #命令行 docker build -t author/chatgpt-ai-app:1.0 -f ./Dockerfile .红框是docker所在文件夹 author&#xff1a;docker用户名chatgpt-ai-app&#xff1a;打包的镜像文件名字:1.0 &#…...

TLS + OpenSSL + Engine + PKCS#11 + softhsm2 安全通信

引擎库路径只有在 /lib 下才能被 "LOAD" 识别到&#xff0c;OpenSSL的ReadMe给的示例在/lib&#xff0c;大概是在构建OpenSSL时默认的configure指定了lib路径 // #define PKCS11_ENGINE_PATH "/usr/lib/x86_64-linux-gnu/engines-1.1/pkcs11.so" #define …...

Unity实现简单的MVC架构

文章目录 前言MVC基本概念示例流程图效果预览后话 前言 在Unity中&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;框架是一种架构模式&#xff0c;用于分离游戏的逻辑、数据和用户界面。MVC模式可以帮助开发者更好地管理代码结构&#xff0c;提高代码的可维护性…...

【简单讲解下OneFlow深度学习框架】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

FastGPT 调用Qwen 测试Hello world

Ubuntu 安装Qwen/FastGPT_fastgpt message: core.chat.chat api is error or u-CSDN博客 参考上面文档 安装FastGPT后 登录&#xff0c; 点击右上角的 新建 点击 这里&#xff0c;配置AI使用本地 ollama跑的qwen模型 问题&#xff1a;树上有3只鸟&#xff0c;开了一枪&#…...

Golang-GMP

GMP调度 golang-GMP语雀笔记整理 GMP调度设计目的&#xff0c;为何设计GMP?GMP的底层实现几个核心数据结构GMP调度流程 设计目的&#xff0c;为何设计GMP? 无论是多进程、多线程目的都是为了并发提高cpu的利用率&#xff0c;但多进程、多线程都存在局限性。比如多进程通过时…...

【PythonWeb开发】Flask自定义模板路径和静态资源路径

在大型的 Flask 项目中&#xff0c;确实可能会有多个子应用&#xff08;Blueprints&#xff09;&#xff0c;每个子应用可能都有自己的静态文件和模板。为了更好地管理和组织这些资源&#xff0c;可以使用static_folder 和template_folder 属性来统一管理。必须同时设置好主应用…...

Java对象创建过程

在日常开发中&#xff0c;我们常常需要创建对象&#xff0c;那么通过new关键字创建对象的执行中涉及到哪些流程呢&#xff1f;本文主要围绕这个问题来展开。 类的加载 创建对象时我们常常使用new关键字。如下 ObjectA o new ObjectA();对虚拟机来讲首先需要判断ObjectA类的…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...