当前位置: 首页 > news >正文

240627_关于CNN中图像维度变化问题

240627_关于CNN中图像维度变化问题

在学习一些经典模型时,其中得维度变化关系总搞不太明白,集中学习了以下,在此作以梳理总结:

一般来说涉及到的维度变换都是四个维度,当batch size=4,图像尺寸为640*640,RGB三通道时,此时维度就是4×3×640×640。3的意思是RGB三通道,如果你传入的图像是单通道图像,此时维度就是4×1×640×640。

当然有些图你看着是一个黑白图,但是他还是有可能是一张RGB三通道图,具体怎么区分呢。右击图片打开属性,打开详细信息,里面可以看到位深度,位深度为24,则为RGB图,位深度为8,则为单通道图。此处就是一个坑,图像分割任务中,标签往往是单通道图,但是有时从网上找到的数据集看起来是黑白的,但是实际训练就会报错,查看了才发现位深度是24,需要用python代码进行修改,具体跳转240627_图像24位深度(RGB图)转为8位深度(单通道图)-CSDN博客。

当维度是三维时,就是没有batch size这个维度,可以理解为这个维度指的是其中一张图。

标准卷积

以U_Net为例

在这里插入图片描述

# U_Net网络的简单结构,就写了一层,其他同理
block1=block_down(3,64)
x1_use=block1(x) # torch.Size([3, 64, 568, 568])
x1=self.maxpool(x1_use) # torch.Size([3, 64, 284, 284])'''
block down中卷积核的定义为
self.conv1 = nn.Conv2d(inp_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
'''

卷积输出的计算公式为

h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightinheightkernel+2padding)+1

w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthinwidthkernel+2padding)+1

输入3张572572的RGB图像(3×3×572×572),经过3×3卷积(padding=0,stride=1),此时的计算公式为
h e i g h t o u t = w i d t h o u t = ( 572 − 3 + 2 ∗ 0 ) 1 + 1 = 570 height_{out}=width_{out}=\frac{(572-3+2*0)}{1}+1=570 heightout=widthout=1(5723+20)+1=570
一共经过两层之后尺寸为568
568,因为kernel的out_channel定义的是64,所以一共有64个卷积核,输出通道为64,此时维度为3×64×568×568。

然后经过最大池化层,尺寸除以2,通道数不变,此时维度为3×64×284×284

其余层数同理

batch_sizeheightwidthin_channelout_channel
Input35725723
Kernel33364
Output357057064

1×1卷积

以ResNet50为例

image-20240627202246263

我们看shortcuts分支(右半弧线分支),这个分支输入一张维度为1×256×56×56的图像,经过一个1×1卷积(stride=2,padding=0),此时经过上述公式计算,尺寸为28,输出通道数为512。

batch_sizeheightwidthin_channelout_channel
Input15656256
Kernel11256512
Output12828512

当然也有特殊情况,1×1卷积,卷积核尺寸为1,步长为1,padding=0,通过以上公式可以计算出来尺寸不会发生变化,但通道数可以发生改变,由卷积核数量决定。

全连接层

全连接层就是把所有的像素点都摊开,摊成尺寸为1×1,通道数好多好多,其卷积核尺寸和输入尺寸一致,输出 通道数就是卷积核个数

batch_sizeheightwidthin_channelout_channel
Input15656256
Kernel5656256512
Output111512

总结

输出通道数就是卷积核个数

卷积后尺寸计算公式就是

h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightinheightkernel+2padding)+1

w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthinwidthkernel+2padding)+1

相关文章:

240627_关于CNN中图像维度变化问题

240627_关于CNN中图像维度变化问题 在学习一些经典模型时,其中得维度变化关系总搞不太明白,集中学习了以下,在此作以梳理总结: 一般来说涉及到的维度变换都是四个维度,当batch size4,图像尺寸为640*640&a…...

食品行业怎么用JSON群发短信

食品作为日常生活不可缺少的元素,市场需求是很稳定的,但是份额就那么多,商家都要来抢占的话,就需要运营推广各凭本事,市场运营中选择合适的推广方式,可以增加店铺销售额,很多实体店或商城都会建…...

MySQL高级-MVCC-隐藏字段

文章目录 1、介绍2、测试2.1、进入服务器中的 /var/lib/mysql/atguigu/2.2、查看有主键的表 stu2.3、查看没有主键的表 employee2.3.1、创建表 employee2.3.2、查看表结构及其其中的字段信息 1、介绍 ---------------- | id | age | name | ---------------- | 1 | 1 | Js…...

探索PcapPlusPlus开源库:网络数据包处理与性能优化

文章目录 0. 本文概要1. PcapPlusPlus介绍1.1 概述1.2主要特性和功能1.3 PcapPlusPlus 主要模块关系和依赖1.4 网络协议层处理过程 2. 实例2.1 基于 PcapPlusPlus 的应用程序设计和封装流程:2.2 多线程示例代码2.3 代码说明: 3. 程序性能进一步优化3.1 避…...

深入理解SSH:网络安全的守护者

在当今数字化时代,网络安全已成为全球关注的焦点。随着网络攻击手段的不断升级,保护数据传输的安全性变得尤为重要。SSH(Secure Shell)作为一种安全的网络协议,为远程登录和网络服务提供了强大的安全保障,成…...

DDD学习笔记四

领域模型的构建 基础领域模型的基本组成有名称、属性、关联、职责、事件和异常 发掘领域概念3种策略: 1)学习已有系统,重用已有模型 2)使用分类标签。分类标签来源于领域,需要我们研究一些资料并做一些提炼。从采用5W…...

Head First设计模式中的典型设计模式解析与案例分析

Head First设计模式中的典型设计模式解析与案例分析 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 《Head First设计模式》是一本广受欢迎的书籍&#xff0c…...

iptables 防火墙(一)

iptables 防火墙(一) 一、Linux 防火墙基础防火墙分类 二、iptables 的表、链结构规则表规则链数据包过滤的匹配流程 三、编写防火墙规则iptables 的安装iptables的基本语法规则的匹配条件通用匹配隐含匹配显式匹配 四、总结 在网络安全的世界里&#xf…...

数据库物理结构设计-定义数据库模式结构(概念模式、用户外模式、内模式)、定义数据库、物理结构设计策略

一、引言 如何基于具体的DBMS产品,为数据库逻辑结构设计的结果,即关系数据库模式,制定适合应用要求的物理结构 1、在设计数据库物理结构前,数据库设计人员首先 要充分了解所用的DBMS产品的功能、性能和特点,包括提供…...

QT加载安装外围依赖库的翻译文件后翻译失败的现象分析:依赖库以饿汉式的形式暴露单例接口导致该现象的产生

1、前提说明 VS2019 QtClassLibaryDll是动态库,QtWidgetsApplication4是应用程序。 首先明确:动态库以饿汉式的形式进行单例接口暴露; 然后,应用程序加载动态库的翻译文件并进行全局安装; // ...QTranslator* trans = new QTranslator();//qDebug() << trans->…...

13_旷视轻量化网络--ShuffleNet V2

回顾一下ShuffleNetV1:08_旷视轻量化网络--ShuffleNet V1-CSDN博客 1.1 简介 ShuffleNet V2是在2018年由旷视科技的研究团队提出的一种深度学习模型&#xff0c;主要用于图像分类和目标检测等计算机视觉任务。它是ShuffleNet V1的后续版本&#xff0c;重点在于提供更高效的模…...

Linux系统编程--进程间通信

目录 1. 介绍 1.1 进程间通信的目的 1.2 进程间通信的分类 2. 管道 2.1 什么是管道 2.2 匿名管道 2.2.1 接口 2.2.2 步骤--以父子进程通信为例 2.2.3 站在文件描述符角度-深度理解 2.2.4 管道代码 2.2.5 读写特征 2.2.6 管道特征 2.3 命名管道 2.3.1 接口 2.3.2…...

docker-本地部署-后端

前置条件 后端文件 这边是一个简单项目的后端文件目录 docker服务 镜像文件打包 #命令行 docker build -t author/chatgpt-ai-app:1.0 -f ./Dockerfile .红框是docker所在文件夹 author&#xff1a;docker用户名chatgpt-ai-app&#xff1a;打包的镜像文件名字:1.0 &#…...

TLS + OpenSSL + Engine + PKCS#11 + softhsm2 安全通信

引擎库路径只有在 /lib 下才能被 "LOAD" 识别到&#xff0c;OpenSSL的ReadMe给的示例在/lib&#xff0c;大概是在构建OpenSSL时默认的configure指定了lib路径 // #define PKCS11_ENGINE_PATH "/usr/lib/x86_64-linux-gnu/engines-1.1/pkcs11.so" #define …...

Unity实现简单的MVC架构

文章目录 前言MVC基本概念示例流程图效果预览后话 前言 在Unity中&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;框架是一种架构模式&#xff0c;用于分离游戏的逻辑、数据和用户界面。MVC模式可以帮助开发者更好地管理代码结构&#xff0c;提高代码的可维护性…...

【简单讲解下OneFlow深度学习框架】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

FastGPT 调用Qwen 测试Hello world

Ubuntu 安装Qwen/FastGPT_fastgpt message: core.chat.chat api is error or u-CSDN博客 参考上面文档 安装FastGPT后 登录&#xff0c; 点击右上角的 新建 点击 这里&#xff0c;配置AI使用本地 ollama跑的qwen模型 问题&#xff1a;树上有3只鸟&#xff0c;开了一枪&#…...

Golang-GMP

GMP调度 golang-GMP语雀笔记整理 GMP调度设计目的&#xff0c;为何设计GMP?GMP的底层实现几个核心数据结构GMP调度流程 设计目的&#xff0c;为何设计GMP? 无论是多进程、多线程目的都是为了并发提高cpu的利用率&#xff0c;但多进程、多线程都存在局限性。比如多进程通过时…...

【PythonWeb开发】Flask自定义模板路径和静态资源路径

在大型的 Flask 项目中&#xff0c;确实可能会有多个子应用&#xff08;Blueprints&#xff09;&#xff0c;每个子应用可能都有自己的静态文件和模板。为了更好地管理和组织这些资源&#xff0c;可以使用static_folder 和template_folder 属性来统一管理。必须同时设置好主应用…...

Java对象创建过程

在日常开发中&#xff0c;我们常常需要创建对象&#xff0c;那么通过new关键字创建对象的执行中涉及到哪些流程呢&#xff1f;本文主要围绕这个问题来展开。 类的加载 创建对象时我们常常使用new关键字。如下 ObjectA o new ObjectA();对虚拟机来讲首先需要判断ObjectA类的…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

高保真组件库:开关

一:制作关状态 拖入一个矩形作为关闭的底色:44 x 22,填充灰色CCCCCC,圆角23,边框宽度0,文本为”关“,右对齐,边距2,2,6,2,文本颜色白色FFFFFF。 拖拽一个椭圆,尺寸18 x 18,边框为0。3. 全选转为动态面板状态1命名为”关“。 二:制作开状态 复制关状态并命名为”开…...

Electron简介(附电子书学习资料)

一、什么是Electron&#xff1f; Electron 是一个由 GitHub 开发的 开源框架&#xff0c;允许开发者使用 Web技术&#xff08;HTML、CSS、JavaScript&#xff09; 构建跨平台的桌面应用程序&#xff08;Windows、macOS、Linux&#xff09;。它将 Chromium浏览器内核 和 Node.j…...

使用VMware克隆功能快速搭建集群

自己搭建的虚拟机&#xff0c;后续不管是学习java还是大数据&#xff0c;都需要集群&#xff0c;java需要分布式的微服务&#xff0c;大数据Hadoop的计算集群&#xff0c;如果从头开始搭建虚拟机会比较费时费力&#xff0c;这里分享一下如何使用克隆功能快速搭建一个集群 先把…...