【机器学习】机器学习重要方法——深度学习:理论、算法与实践
文章目录
- 引言
- 第一章 深度学习的基本概念
- 1.1 什么是深度学习
- 1.2 深度学习的历史发展
- 1.3 深度学习的关键组成部分
- 第二章 深度学习的核心算法
- 2.1 反向传播算法
- 2.2 卷积神经网络(CNN)
- 2.3 循环神经网络(RNN)
- 第三章 深度学习的应用实例
- 3.1 图像识别
- 3.2 自然语言处理
- 3.3 语音识别
- 第四章 深度学习的未来发展与挑战
- 4.1 计算资源与效率
- 4.2 模型解释性与可解释性
- 4.3 小样本学习与迁移学习
- 4.4 多模态学习与融合
- 结论
引言
深度学习(Deep Learning)作为机器学习的一个重要分支,通过构建和训练多层神经网络,自动提取和学习数据的多层次特征,近年来在多个领域取得了突破性的进展。本文将深入探讨深度学习的基本原理、核心算法及其在实际中的应用,并提供代码示例以帮助读者更好地理解和掌握这一技术。

第一章 深度学习的基本概念
1.1 什么是深度学习
深度学习是一类通过多层神经网络进行表征学习(representation learning)的机器学习方法。其核心思想是通过构建深层神经网络,自动从数据中提取和学习多层次的特征表示,从而实现更高层次的抽象和数据理解。
1.2 深度学习的历史发展
深度学习的发展经历了多个重要阶段:
- 早期阶段:神经网络的基础理论和感知机模型的提出。
- 神经网络的复兴:反向传播算法的提出和多层神经网络的广泛应用。
- 深度学习的兴起:卷积神经网络(CNN)在图像识别中的成功应用,以及深度学习在自然语言处理和语音识别等领域的突破。
1.3 深度学习的关键组成部分
深度学习模型通常包括以下几个关键组成部分:
- 输入层(Input Layer):接收原始数据输入。
- 隐藏层(Hidden Layers):通过多个隐藏层进行特征提取和表征学习。
- 输出层(Output Layer):输出预测结果或分类标签。
- 激活函数(Activation Function):对隐藏层的线性变换进行非线性映射。
- 损失函数(Loss Function):衡量模型预测结果与真实标签之间的差异。
- 优化算法(Optimization Algorithm):通过梯度下降等方法优化模型参数。
第二章 深度学习的核心算法
2.1 反向传播算法
反向传播算法是训练多层神经网络的关键算法,通过计算损失函数对网络参数的梯度,逐层反向传播误差并更新参数,从而最小化损失函数。
import numpy as np# 定义激活函数和其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return x * (1 - x)# 初始化数据和参数
X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0],[1],[1],[0]])
input_layer_neurons = X.shape[1]
hidden_layer_neurons = 2
output_neurons = 1
learning_rate = 0.1# 初始化权重和偏置
wh = np.random.uniform(size=(input_layer_neurons, hidden_layer_neurons))
bh = np.random.uniform(size=(1, hidden_layer_neurons))
wout = np.random.uniform(size=(hidden_layer_neurons, output_neurons))
bout = np.random.uniform(size=(1, output_neurons))# 训练神经网络
for epoch in range(10000):# 前向传播hidden_layer_input = np.dot(X, wh) + bhhidden_layer_activation = sigmoid(hidden_layer_input)output_layer_input = np.dot(hidden_layer_activation, wout) + boutoutput = sigmoid(output_layer_input)# 计算损失error = y - output# 反向传播d_output = error * sigmoid_derivative(output)error_hidden_layer = d_output.dot(wout.T)d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_activation)# 更新权重和偏置wout += hidden_layer_activation.T.dot(d_output) * learning_ratebout += np.sum(d_output, axis=0, keepdims=True) * learning_ratewh += X.T.dot(d_hidden_layer) * learning_ratebh += np.sum(d_hidden_layer, axis=0, keepdims=True) * learning_rateprint(f'训练后的输出:\n{output}')
2.2 卷积神经网络(CNN)
卷积神经网络(Convolutional Neural Network, CNN)是一类专门用于处理具有网格状结构数据(如图像)的深度学习模型。CNN通过卷积层和池化层提取图像的局部特征,并通过全连接层进行分类或回归。
import tensorflow as tf
from tensorflow.keras import layers, models# 构建卷积神经网络
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 加载MNIST数据集
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f'测试准确率: {test_acc}')
2.3 循环神经网络(RNN)
循环神经网络(Recurrent Neural Network, RNN)是一类专门用于处理序列数据的深度学习模型。RNN通过循环连接前一时刻的隐藏状态和当前输入,实现对序列数据的建模。LSTM(Long Short-Term Memory)和GRU(Gated Recurrent Unit)是两种常见的RNN变体,解决了标准RNN在长序列数据中出现的梯度消失问题。
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Embedding# 生成示例数据
X = np.random.random((1000, 10, 1))
y = np.random.randint(2, size=(1000, 1))# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(10, 1)))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)# 生成测试数据
X_test = np.random.random((100, 10, 1))
y_test = np.random.randint(2, size=(100, 1))# 评估模型
test_loss, test_acc = model.evaluate(X_test, y_test)
print(f'测试准确率: {test_acc}')

第三章 深度学习的应用实例
3.1 图像识别
在图像识别任务中,深度学习通过卷积神经网络(CNN)显著提高了分类精度。以下是一个在CIFAR-10数据集上使用CNN进行图像分类的示例。
from tensorflow.keras.datasets import cifar10# 加载数据集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# 构建卷积神经网络
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 训练模型
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f'测试准确率: {test_acc}')
3.2 自然语言处理
在自然语言处理任务中,深度学习通过循环神经网络(RNN)和注意力机制(Attention Mechanism)实现了文本分类、机器翻译和情感分析等应用。以下是一个在IMDB情感分析数据集上使用LSTM进行文本分类的示例。
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences# 加载数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=10000)# 数据预处理
maxlen = 100
x_train = pad_sequences(x_train, maxlen=maxlen)
x_test = pad_sequences(x_test, maxlen=maxlen)# 构建LSTM模型
model = Sequential()
model.add(Embedding(10000, 128, input_length=maxlen))
model.add(LSTM(64))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test), verbose=2)# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print(f'测试准确率: {test_acc}')
3.3 语音识别
在语音识别任务中,深度学习通过卷积神经网络(CNN)和循环神经网络(RNN)的结合,实现了对语音信号的准确识别。以下是一个在语音命令数据集上使用深度学习进行语音识别的示例。
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np# 加载数据集
(train_audio, train_labels), (test_audio, test_labels) = tf.keras.datasets.speech_commands.load_data()# 数据预处理
train_audio = train_audio / np.max(train_audio)
test_audio = test_audio / np.max(test_audio)
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=12)
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=12)# 构建深度学习模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(20, 80, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(12, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
history = model.fit(train_audio, train_labels, epochs=10, validation_data=(test_audio, test_labels), verbose=2)# 评估模型
test_loss, test_acc = model.evaluate(test_audio, test_labels, verbose=2)
print(f'测试准确率: {test_acc}')

第四章 深度学习的未来发展与挑战
4.1 计算资源与效率
深度学习模型的训练通常需要大量的计算资源和时间,如何提高训练效率和降低计算成本是一个重要的研究方向。研究方向包括分布式训练、模型压缩和量化等技术。
4.2 模型解释性与可解释性
深度学习模型通常是黑箱模型,难以解释其内部工作机制。研究如何提高深度学习模型的解释性和可解释性,帮助用户理解和信任模型的决策,是一个重要的研究课题。
4.3 小样本学习与迁移学习
在许多实际应用中,获取大量标注数据是困难的。研究如何在小样本条件下有效训练深度学习模型,以及利用迁移学习从已有模型中迁移知识,是深度学习的一个重要方向。
4.4 多模态学习与融合
多模态学习通过融合来自不同模态的数据(如图像、文本、语音等),可以提升模型的表现和应用范围。研究如何有效融合多模态数据,是深度学习的一个关键挑战。
结论
深度学习作为一种强大的机器学习方法,通过构建和训练多层神经网络,能够自动提取和学习数据的多层次特征,广泛应用于图像识别、自然语言处理和语音识别等领域。本文详细介绍了深度学习的基本概念、核心算法及其在实际中的应用,并提供了具体的代码示例,帮助读者深入理解和掌握这一技术。希望本文能够为您进一步探索和应用深度学习提供有价值的参考。

相关文章:
【机器学习】机器学习重要方法——深度学习:理论、算法与实践
文章目录 引言第一章 深度学习的基本概念1.1 什么是深度学习1.2 深度学习的历史发展1.3 深度学习的关键组成部分 第二章 深度学习的核心算法2.1 反向传播算法2.2 卷积神经网络(CNN)2.3 循环神经网络(RNN) 第三章 深度学习的应用实…...
计网之IP
IP IP基本认识 不使用NAT时,源IP地址和目的IP地址不变,只要源MAC和目的MAC地址在变化 IP地址 D类是组播地址,E类是保留地址 无分类地址CIDR 解决直接分类的B类65536太多,C类256太少a.b.c.d/x的前x位属于网路号,剩…...
mybatis延迟加载
mybatis延迟加载 1、延迟加载概述 应用场景 如果查询订单并且关联查询用户信息。如果先查询订单信息即可满足要求,当我们需要查询用户信息时再查询用户信息。把对用户信息的按需去查询就是延迟加载。 延迟加载的好处 先从单表查询、需要时再从关联表去关联查…...
危险!属性拷贝工具的坑!
1. 背景 之前在专栏中讲过“不推荐使用属性拷贝工具”,推荐直接定义转换类和方法使用 IDEA 插件自动填充 get / set 函数。 不推荐的主要理由是: 有些属性拷贝工具性能有点差有些属性拷贝工具有“BUG”使用属性拷贝工具容易存在一些隐患(…...
qt实现打开pdf(阅读器)功能用什么库比较合适
关于这个问题,网上搜一下,可以看到非常多的相关博客和例子,可以先看看这个总结性的博客(https://zhuanlan.zhihu.com/p/480973072) 该博客讲得比较清楚了,这里我再补充一下吧(qt官方也给出了一些…...
在node.js环境中使用web服务器http-server运行html静态文件
http-server http-server是一个超轻量级web服务器,它可以将任何一个文件夹当作服务器的目录供自己使用。 当我们想要在服务器运行一些代码,但是又不会配置服务器的时候,就可以使用http-server就可以搞定了。 使用方法 因为http-server需要…...
前端学习篇一(HTML)
Introduction ##文章内容:使用HBuilder制作一个简单的HTML5网页以此达到学习HTML5 的目的 ##编写内容:1.HTML实现平台 2.HTML简介 3.HTML语言解析 ##编写人:贾雯爽 ##最后更新时间:2024/07/01 Overview Details 一、HTML简介…...
VUE笔记
框架: 框架结构,把很多基础功能已经实现(封装了)。 框架:在基础语言之上,对各种基础功能进行封装,方便开发者,提高开发效率。 举例:操作页面 现在:点击按…...
Datawhale机器学习day-1
赛题 在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是…...
业务模型扩展字段存储
构建业务模型时,通常模型会设置扩展信息,存储上一般使用JSON格式存储到db中。JSON虽然有较好的扩展性,但并没有结构化存储的类型和非空等约束,且强依赖代码中写入/读取时进行序列化/反序列化操作, 当扩展信息结构简单且…...
50+k8s常用命令,助你成为k8s大牛!
Kubernetes是一个强大的容器编排平台,不管是运维、开发还是测试或多或少都会接触到,熟练的掌握k8s可大大提高工作效率和强化自身技能。 集群管理 1. 查看集群节点状态: kubectl get nodes2. 查看集群资源使用情况: kubectl top nodes3. 查看集群信息…...
002-基于Sklearn的机器学习入门:回归分析(上)
本节及后续章节将介绍机器学习中的几种经典回归算法,所选方法都在Sklearn库中聚类模块有具体实现。本节为上篇,将介绍基础的线性回归方法,包括线性回归、逻辑回归、多项式回归和岭回归等。 2.1 回归分析概述 回归(Regression&…...
python实现网页自动化(自动登录需要验证的网页)
引言: python作为实现网页自动化的一个重要工具,其强大的各种封装的库使得程序运行更加简洁,只需要下载相应的库,然后调用库中的函数就可以简便的实现我们想要的网页相关操作。 正文: 我的前几篇文章写了关于初学爬虫中比较容易上手的功能,例如爬取静态网页的数据、动…...
ctfshow-web入门-命令执行(web71-web74)
目录 1、web71 2、web72 3、web73 4、web74 1、web71 像上一题那样扫描但是输出全是问号 查看提示:我们可以结合 exit() 函数执行php代码让后面的匹配缓冲区不执行直接退出。 payload: cvar_export(scandir(/));exit(); 同理读取 flag.txt cinclud…...
一体化导航的优点及应用领域
一体化导航,作为现代导航技术的重要发展方向,正日益展现出其独特的魅力和广泛的应用前景。这种导航方式将多种导航技术、信息系统以及数据处理方法集成于一个统一的平台上,为用户提供高效、准确、便捷的导航服务。 一体化导航的核心在于其高度…...
“吃饭大学”!中国大学食堂排行TOP10(含西电)
同学们们,考研择校考虑的因素除了学术,地理位置等方面,你们还会考虑哪些因素呢?小研作为一个吃货,必定会考虑的一个因素当然是大学的食堂美食啊~ 那中国超级好吃的大学食堂在哪?一起来看看有没有你的目标院…...
使用 Mybatis 时,调用 DAO接口时是怎么调用到 SQL 的?
Mybatis 是一个流行的 Java 持久层框架,它提供了一种半自动的 SQL 映射方式,允许开发者在 Java 代码中以一种更加直观和灵活的方式来操作数据库。当你使用 Mybatis 调用 DAO 接口时,背后的工作流程大致如下: 接口定义:…...
微信小程序毕业设计-微信食堂线上订餐系统项目开发实战(附源码+论文)
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:微信小程序毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计…...
昂首资本实例使用价格行为策略,交易翻倍一点都不难
交易翻倍难吗?当Anzo Capital昂首资本使用价格行为策略进行交易时,发现一点都不难,以下是使用价格行为策略的实例分享: 1. 在初次交易信号出现时,推荐在1.00429价位入场,将止损设于1.04399,止盈…...
20240701 每日AI必读资讯
🏫AI真炼丹:整整14天,无需人类参与 - 英矽智能推出全球首个AI参与决策的生物学实验室,实现了14天内完成靶点发现和验证的全自动化闭环实验。 - 该实验室由PandaOmics平台驱动,集成多种预测模型和海量数据࿰…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
