各类排序方法 手撕快排 回顾经典快排 优化版快排


快排的主要思想是分而治之
第一步,确定分界点,a
第二步,调整区间,利用分界点a,把小于分界点a的数放在左边,大于的放在右边,相等的放在哪都可以
第三步,递归处理左右两段
实现(暴力方法)
总数组是q[],然后定义两端数组,l[],r[]
找到一个分界点a
遍历q[],如果q[i]<=a,则放在l[],否则放在r[]
然后再把l[]和r[]放入q[]
实现(优美)
双指针
在区间q[]的左右两端分别放指针i,j
然后还是要确定分界点a
i和j分别往中间移动
当移动i时,发现指针指向的值大于a时候,停止移动
移动j同理,当发现j指向的值小于a的时候,停止移动
此时i,j都判断到了不符合的数,对于他们不符合的数来说
不符合i指针的数符合j的指针,不符合j指针的数符合i的指针,
我们将i,j指向的数交换位置,就可以了
两个指针相遇的时候,i指针经过的数一定小于x
j指针经过的数一定小于y
模板

#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
ll n;
const int N =1e6+10;
ll q[N];
void kpai(ll q[],int l,int r)//函数开始
{//判断一下如果左右边界大小错误,或者相等,则这个序列已经排完了,returnif(l==r)return;//随便选一个a,为分界点ll a=q[(r+l)/2];//不直接使用lr,是因为下面分割的时候lr还有用//定义i,j,为指针,因为下方是先++再循环,为了配合do while,指针向边界外再移动一格//i是左指针,向外移动一格为-1,j是右指针,向外移动一格为+1ll i=l-1; int j=r+1;//如果i,j相遇,结束循环while(i<j){//先++,再判断循环,如果while遇到i指向的数不小于a,结束循环,j同理//绝对不会死循环,因为判断里没有<=和>=,所以遇见a本身时,一定会停止,没有死循环do i++;while(q[i]<a);do j--;while(q[j]>a);//当循环停止,一定是ij都发现了不符合自己判断条件的数,并且正在指向他//因为至少会发现a,所以一定会停止循环,且交换和a相等的数,也符合预期效果//不符合i的数一定符合j,不符合j的数一定符合i(a除外,他既不符合i也不符合j)//当然,这个过程会导致和a相等的数互换,但是相等的数不影响排序,只是影响一点点速度//a是序列中间的一个值,序列被a划分为两段//如果i>j了,说明左右分界的两段,都已经被遍历过了//现在的情况,符合前面设想的,分阶点左右两边,都一致的小于a或者大于aif(i<j)swap(q[i],q[j]);}//上面的循环结束,证明此时i,j,已经相遇 ,i经过的数一定小于等于a,j经过的数一定大于等于a//把i经过的一段数和b经过的一段数,都看成一个整体,这两段数已经排好序了//我们把i或者j取出来一个,当做分界点//这个分界点和a的分界点不同,a的分界点目的是利用a进行比较大小进行排序//这个分界点的作用是将一段数分成两段,然后再在每段里分别定义分界点a进行排序//这个分段的目的是经过不断的切分,最后把数据切割成最小的数据段,就是一个数//一个数,再进入嵌套的函数的时候,会因为第一个if判断,l==r,而停止循环//在一个数之前,是两个数,或者三个数,将两个数排好顺序,放回在有子串顺序的父串内//假如两个数的父串是四个数,两个数据段,两个数据段是已经排好序了//两个数据段内自己的两个数,经过排序,再放回父串,那父串就是完整的排序后的数据串了//那再将父串放入父串的父串,父串的父串也是完整排序的数据串了//循环往复,数据串排序就结束了kpai(q,l,j);kpai(q,j+1,r);
}
int main(){scanf("%d",&n);//读入for(int i=0;i<n;i++){scanf("%lld",&q[i]);}//快排函数kpai(q,0,n-1);//读出for(int i=0;i<n;i++){cout<<q[i]<<' ';}return 0;
}相关文章:
各类排序方法 手撕快排 回顾经典快排 优化版快排
快排的主要思想是分而治之 第一步,确定分界点,a 第二步,调整区间,利用分界点a,把小于分界点a的数放在左边,大于的放在右边,相等的放在哪都可以 第三步,递归处理左右两段 实现(暴…...
独一无二的设计模式——单例模式(Java实现)
1. 引言 亲爱的读者们,欢迎来到我们的设计模式专题,今天的讲解的设计模式,还是单例模式哦!上次讲解的单例模式是基于Python实现(独一无二的设计模式——单例模式(python实现))的&am…...
使用MoA(Mixture of Agents)混合智能体技术,结合多个开源大语言模型如Llama3、phi-3和Mistral,实现一个强大的AI智能体
1.简介 论文简介: 论文提出了一种称为混合智能体(Mixture-of-Agents,MoA)的方法,利用多个大语言模型(LLM)的集体智慧来提高自然语言理解和生成任务的性能。 MoA采用了分层结构,每一层包含多个LLM智能体。每个智能体都将前一层所有智能体的输出作为辅助信息来生成自己的回答。通…...
前端面试题_Css
一、说一下Css的盒子模型? HTML中所有元素都可以看成是一个盒子 盒子的组成:content、padding、border、margin 盒子的类型: 标准盒模型:marginborderpaddingcontent -- box-sizing:content-box(默认&a…...
AI在线免费视频工具3:声音生视频
1、声音生视频 Noisee:通过声音生成对应视频,可以增加prompt指定生成内容相关视频 https://noisee.ai/create...
final、const、readonly关键字在不同语言中代表着什么
一、Java 1.被final修饰的类不能被继承。 2.被final修饰的方法不能被重写。 被 final 修饰的类中所有的成员方法都会隐式的定义为 final 方法。 若父类中 final 方法的访问权限为 private ,则子类中不能直接继承该方法。此时可以在子类中定义相同方法名的函数&…...
HarmonyOS ArkUi Tabs+TabContent+List实现tab吸顶功能
Demo效果 Entry Component struct StickyNestedScroll {State message: string Hello WorldState arr: number[] []scroller new Scroller()StyleslistCard() {.backgroundColor(Color.White).height(72).width("100%").borderRadius(12)}build() {Scroll(this.sc…...
Hugging Face Accelerate 两个后端的故事:FSDP 与 DeepSpeed
社区中有两个流行的零冗余优化器 (Zero Redundancy Optimizer,ZeRO)算法实现,一个来自DeepSpeed,另一个来自PyTorch。Hugging FaceAccelerate对这两者都进行了集成并通过接口暴露出来,以供最终用户在训练/微调模型时自主选择其中之…...
TextField是用于在用户界面中输入文本的控件。它广泛应用于表单、搜索框、评论区等需要用户输入文字的场景
TextField是用于在用户界面中输入文本的控件。它广泛应用于表单、搜索框、评论区等需要用户输入文字的场景。以下是对TextField的详细解释,涵盖其各个方面的功能和属性。 基本属性 text 描述:TextField中当前显示的文本。用法:text: "示…...
MYSQL 四、mysql进阶 5(InnoDB数据存储结构)
一、数据库的存储结构:页 索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说时存储在页结构中,另一方面,索引是在存储引擎中实现的,Mysql服务器上的存储引擎负责对表…...
Spring企业开发核心框架-下
五、Spring AOP面向切面编程 1、场景设定和问题复现 ①准备AOP项目 项目名:Spring-aop-annotation ②声明接口 /*** - * / 运算的标准接口!*/ public interface Calculator { int add(int i, int j); int sub(int i, int j); int mul(int i, in…...
X射线底片焊缝缺陷检测
实现四种焊缝缺陷的检测和分割处理。...
直播的js代码debug解析找到protobuf消息的定义
我们都知道直播的弹幕消息是通过websocket发送的,而且是通过protobuf传输的,那么这里面传输了哪些内容,这个proto文件又要怎么定义?每个消息叫什么,消息里面又包含有哪些字段,每个字段又是什么类型…...
详细学习es6扩展运算符
ES6中的扩展运算符(Spread Operator)是一种非常方便的语法,主要用于将可迭代对象(比如数组、字符串等)展开成多个参数。以下是关于ES6扩展运算符的详细内容: 用法: 在数组字面量中展开数组&am…...
HEC-HMS水文模型教程
原文链接:HEC-HMS水文模型教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247607904&idx5&sn1a210328a3fc8f941b433674d8fe2c85&chksmfa826787cdf5ee91d01b6981ebd89deac3e350d747d0fec45ce2ef75d7cb8009341c6f55114d&token90645021…...
Spring Cloud LoadBalancer基础入门与应用实践
官网地址:https://docs.spring.io/spring-cloud-commons/reference/spring-cloud-commons/loadbalancer.html 【1】概述 Spring Cloud LoadBalancer是由SpringCloud官方提供的一个开源的、简单易用的客户端负载均衡器,它包含在SpringCloud-commons中用…...
layui在表格中嵌入上传按钮,并修改上传进度条
当需要在表格中添加上传文件按钮,并不需要弹出填写表单的框的时候,需要在layui中,用按钮触发文件选择 有一点需要说明的是,layui定义table并不是在定义的标签中渲染,而是在紧接着的标签中渲染,所以要获取实…...
14-10 AIGC 项目生命周期——第一阶段
生成式 AI 项目生命周期的整个过程类似于从范围、选择、调整和对齐/协调模型以及应用程序集成开始的顺序依赖过程。流程表明每个步骤都建立在前一步的基础上。有必要了解每个阶段对于项目的成功都至关重要。 下面的流程图重点介绍了生成式 AI 项目生命周期的第一阶段 1 — “范…...
经典小游戏(一)C实现——三子棋
switch(input){case 1:printf("三子棋\n");//这里先测试是否会执行成功break;case 0:printf("退出游戏\n");break;default :printf("选择错误,请重新选择!\n");break;}}while(input);//直到输入的结果为假,循环才会结束} …...
如何利用AI生成可视化图表(统计图、流程图、思维导图……)免代码一键绘制图表
由于目前的AI生成图表工具存在以下几个方面的问题: 大多AI图表平台是纯英文,对国内用户来说不够友好;部分平台在生成图表前仍需选择图表类型、配置项,操作繁琐;他们仍需一份规整的数据表格,需要人为对数据…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
