376. 摆动序列——【Leetcode每日刷题】
376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
-
相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2
提示:
- 1 <= nums.length <= 1000
- 0 <= nums[i] <= 1000
进阶:你能否用 O(n) 时间复杂度完成此题?
思路:
法一:动态规划
本题大家都很容易想到用动态规划来求解,求解的过程类似最长上升子序列。
- 不过是需要判断两个序列;
- 且需要nums相同长度的数组dp, flg,分别存放记录包括nums[i]在内的最长摆动序列及记录nums[j]与上一个数的差值符号。
法二:贪心
维护峰顶最大,峰谷最小:
- 设立一个 flg 记录前一次 序列摆动的趋势,趋势相反,序列长度 加 1;
- 如果相等元素跳过;
- 如果一直递增,序列长度不变,最后一个值一直更新当前最大值;(这样才有更多的机会遇到较小的值)
- 如果一直递减,序列长度不变,最后一个值一直更新当前最小值。(这样才有更多的机会遇到较大的值)
代码:(Java)
法一:动态规划
import java.util.Arrays;public class WiggleMaxLength {public static void main(String[] args) {// TODO Auto-generated method stubint[] nums = {1,17,5,10,13,15,10,5,16,8};System.out.println(wiggleMaxLength(nums));}public static int wiggleMaxLength(int[] nums) {int n = nums.length;int[] dp = new int[n];//记录包括nums[i]在内的最长摆动序列int[] flg = new int[n];//记录nums[i]与上一个数的差值符号Arrays.fill(dp, 1);Arrays.fill(flg, 0); // 1表示和上一个数的差为正数,-1 表示和上一个数之差为负数 ,0表示相等for(int i = 1; i < n; i++) {for(int j = 0; j < i; j++) {if(nums[i] != nums[j] && flg[j] != (nums[i] > nums[j] ? 1 : -1) && dp[j] + 1 > dp[i]){flg[i] = nums[i] > nums[j] ? 1 : -1;dp[i] = dp[j] + 1;}}}return dp[n - 1];}
}
法二:贪心
public class WiggleMaxLength {public static void main(String[] args) {// TODO Auto-generated method stubint[] nums = {1,17,5,10,13,15,10,5,16,8};System.out.println(wiggleMaxLength(nums));}public static int wiggleMaxLength(int[] nums) {int n = nums.length;int flg = 0;//记录nums[i]与上一个数的差值符号int len = 1;for(int i = 1; i < n; i++) {if(nums[i] == nums[len - 1]) {continue;}else if(flg != (nums[i] > nums[len - 1] ? 1 : -1)){flg = nums[i] > nums[len - 1] ? 1 : -1;nums[len] = nums[i];len++;}else {nums[len - 1] = nums[i];}}return len;}
}
运行结果:
复杂度分析
法一:动态规划
- 时间复杂度:O(n2)O(n^2)O(n2),其中 n 是序列的长度。我们需要两重 for 循环。
- 空间复杂度:O(n)O(n)O(n)。我们需要nums相同长度的数组dp, flg,分别存放记录包括nums[i]在内的最长摆动序列及记录nums[j]与上一个数的差值符号。
法二:贪心
- 时间复杂度:O(n)O(n)O(n),其中 n 是序列的长度。我们只需要遍历该序列一次。
- 空间复杂度:O(1)O(1)O(1)。我们只需要常数空间来存放若干变量。
类似题解题目:
646. 最长数对链
300. 最长递增子序列
注:仅供学习参考!
题目来源:力扣。
相关文章:

376. 摆动序列——【Leetcode每日刷题】
376. 摆动序列 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。 例如, [1, 7, 4, 9, 2, 5] 是一个…...

mgre实验
实验思路 1、首先根据拓扑结构合理分配IP地址,并对各个路由器的IP地址和R5环回接口的IP地址进行配置。 2、让私网中的边界路由器对ISP路由器做缺省路由。 3、根据实验要求,对需要配置不同类型认证的路由器进行认证配置,和需要不同封装的协议…...
一文彻底了解Zookeeper(介绍篇)
zookeeper 是什么? zookeeper是一个分布式协作框架,提供高可用,高性能,强一致等特性 zookeeper 有哪些应用场景? 分布式锁:分布式锁是指在分布式环境中,多个进程或线程需要互斥地访问某个共享…...

1. ELK Stack 理论篇之什么是ELK Stack?
ELK Stack 理论篇之什么是ELK Stack?1.1 什么是 ELK Stack?1.2 ELK Stack的发展史1.2.1 Elasticsearch1.2.2 引入 Logstash 和 Kibana,产品更强大1.2.3 社区越来越壮大,用例越来越丰富1.2.4 然后我们向 ELK 中加入了 Beats1.2.5 那么&#x…...

两道有关链表的练习
目录 一、分割链表 二、奇偶链表 一、分割链表 给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你不需要 保留 每个分区中各节点的初始相对位置。 示例 1: 输…...

Python uiautomator2安卓自动化测试
一、前言 uiautomator2是Python对Android设备进行UI自动化的库,支持USB和WIFI链接,可以实现获取屏幕上任意一个APP的任意一个控件属性,并对其进行任意操作。 重点是它可以实现安卓自动化采集,甚至是群控采集,且安装和…...

Leetcode. 160相交链表
文章目录指针解法指针解法 核心思路 : 先 分别求两个链表的长度 然后长的链表先走 差距步(长-短) 最后长链表和短链表同时走 ,第一地址相同的就是交点 ,注意一定是地址相同 不可能出现上图这种情况 ,因为C1…...

MDPs —— 马尔可夫决策定义与算法
文章目录MDPs 定义——由实例开始时序决策问题给游戏增点乐子*为什么要有折扣游戏的解——原则所以,什么是 MDPs?MDPs 的基本原理、表示光环原理效用的求解是反向传播的原则不变条件MDPs 的表示MDPs 求解效用迭代法缺点原则迭代法MDPs 定义——由实例开始…...

【C++】图
本文包含了图的基本概念 1.相关概念 1.1 无/有向 无向图:每一个顶点之间的连线没有方向 有向图:连线有方向(类似离散数学的二元关系 <A,B>代表从A到B的边,有方向) <A,B>中A为始点,B为终点在…...
尾递归优化
文章目录1. 前言2. 什么尾调用(Tail Call)?3. 尾调用优化4. Linux内核下的尾递归优化使用5. 参考资料1. 前言 限于作者能力水平,本文可能存在谬误,对此给读者带来的损失,作者不错任何承诺。 2. 什么尾调用…...

P1120 小木棍(搜索+剪枝)
题目链接:P1120 小木棍 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 样例输入: 9 5 2 1 5 2 1 5 2 1 样例输出: 6 分析:这道题一看数据范围就知道是搜索,但关键是需要剪枝。 首先我们求出所有木棍的长度和&am…...

【专项训练】动态规划-3
动态规划:状态转移方程、找重复性和最优子结构 分治 + 记忆化搜索,可以过度到动态规划(动态递推) function DP():# DP状态定义# 需要经验,需把现实问题定义为一个数组,一维、二维、三维……dp =[][] # 二维情况for i = 0...M:...

【Linux】信号+再谈进程地址空间
目录 一、Linux中的信号 1、Linux中的信号 2、进程对信号的处理 3、信号的释义 二、信号的捕捉 1、信号的捕捉signal() 2、信号的捕捉sigaction() 三、信号如何产生? 1、kill()用户调用kill向操作系统发送信号 通过命令行参数模仿写一个kill命令 2、rais…...

C++回顾(二十一)—— list容器
21.1 list概述 list是一个双向链表容器,可高效地进行插入删除元素。list不可以随机存取元素,所以不支持at.(pos)函数与[]操作符。It(ok) it5(err)需要添加头文件:#include <list> 21.2 list构造 (1)默认构造…...

爱国者一体机电脑蓝屏怎么U盘重装系统教学?
爱国者一体机电脑蓝屏怎么U盘重装系统教学?有用户使用的爱国者一体机电脑开机了之后突然变成了蓝屏的了。而且无法继续使用了,那么遇到这样的蓝屏问题怎么去进行系统的重装呢?一起来看看以下的U盘重装系统教学吧。 准备工作: 1、U…...
Vue学习笔记(9)
9.1 axios 9.1.1 概述 Axios是一个流行的基于Promise的HTTP客户端,用于在浏览器和Node中发送HTTP请求。它可以用于处理各种请求类型,例如GET,POST等。Axios可以很容易地与现代前端框架和库集成,例如React,Vue等。 A…...

中值滤波+Matlab仿真+频域响应分析
中值滤波 文章目录中值滤波理解中值滤波的过程Matlab 实现实际应用频域分析中值滤波是一种滤波算法,其目的是去除信号中的噪声,而不会对信号本身造成太大的影响。它的原理非常简单:对于一个给定的窗口大小,将窗口内的数值排序&…...

自然语言处理中数据增强(Data Augmentation)技术最全盘点
与“计算机视觉”中使用图像数据增强的标准做法不同,在NLP中,文本数据的增强非常少见。这是因为对图像的琐碎操作(例如将图像旋转几度或将其转换为灰度)不会改变其语义。语义上不变的转换的存在是使增强成为Computer Vision研究中…...

PINN解偏微分方程实例1
PINN解偏微分方程实例11. PINN简介2. 偏微分方程实例3. 基于pytorch实现代码4. 数值解参考资料1. PINN简介 PINN是一种利用神经网络求解偏微分方程的方法,其计算流程图如下图所示,这里以偏微分方程(1)为例。 ∂u∂tu∂u∂xv∂2u∂x2\begin{align} \frac{…...
【python 基础篇 十二】python的函数-------函数生成器
目录1.生成器基本概念2.生成器的创建方式3.生成器的输出方式4.send()方法5.关闭生成器6.注意事项1.生成器基本概念 是一个特色的迭代器(迭代器的抽象层级更高)所以拥有迭代器的特性 惰性计算数据 节省内存 ----就是不是立马生成所有数据,而是…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...