当前位置: 首页 > news >正文

Leetcode 2065. 最大化一张图中的路径价值(DFS / 最短路)

Leetcode 2065. 最大化一张图中的路径价值

暴力DFS

容易想到,从0点出发DFS,期间维护已经走过的距离(时间)和途径点的权值之和,若访问到0点则更新答案,若下一步的距离与已走过的距离和超出了maxTime,则不能向下继续DFS

注意的是,每个点的权值只会计算一次,可以使用一个boolean数组 vis[ ] 来记录该点的权值是否已经计算过
另一种方法是,每当第一次到达一个点并获得权值后,将它的权值修改为0,若后续又一次访问到该点,加0不会影响最终结果,省去vis数组的操作

超时,通过样例59 / 62

class Solution {int res;public void dfs(int x, int[] values, int[][] map, int maxTime, int time, int sum){if(x == 0){res = Math.max(res, sum);}int n = values.length;for(int i = 0 ; i < n; i ++){if(map[x][i] != 0 && time + map[x][i] <= maxTime){int val = values[i];values[i] = 0;dfs(i, values, map, maxTime, time + map[x][i], sum + val);values[i] = val;}}return ;}public int maximalPathQuality(int[] values, int[][] edges, int maxTime) {int n = values.length;int [][] map = new int [n][n];for(int[] e: edges){int a = e[0];int b = e[1];int t = e[2];map[a][b] = t;map[b][a] = t;}res = 0;int val = values[0];values[0] = 0;dfs(0, values, map, maxTime, 0, val);return res;}
}

最短路 优化剪枝

注意到,当判断一个点是否可以继续深入时,可以考虑的一种剪枝方式是,向该点前进后,若剩余的时间不足以返回0点,则不必向该点DFS
该问题转换为,判断x点回到0点的距离是否超过maxTime - time,即为0点出发的最短路问题,使用Dijstra算法实现

另一方面,当图中的点较稀疏时,使用邻接矩阵遍历找边会导致时间的浪费,因此选择使用邻接表实现图的存储

class Solution {int res;public void dfs(int x, int[] values, List<int[]>[] map, int maxTime, int time, int sum, int[] dis){if(x == 0){res = Math.max(res, sum);}int n = values.length;for(int arr[] : map[x]){int y = arr[0];int t = arr[1];// 求和时增加dis,若不足返回0点则不必DFSif(time + t + dis[y] <= maxTime){int val = values[y];values[y] = 0;dfs(y, values, map, maxTime, time + t, sum + val, dis);values[y] = val;}}return ;}public int maximalPathQuality(int[] values, int[][] edges, int maxTime) {int n = values.length;// 邻接表  map[x]为x发出的边的集合List,List中的每个int[],int[0]为终点,int[1]为距离List<int[]>[] map = new ArrayList[n];for(int i = 0 ; i < n; i ++){map[i] = new ArrayList<int[]>();}for(int[] e: edges){int a = e[0];int b = e[1];int t = e[2];map[a].add(new int[]{b, t});map[b].add(new int[]{a, t});}// dijstraint inf = Integer.MAX_VALUE;int dis[] = new int [n];Arrays.fill(dis, inf);for(int [] arr: map[0]){int y = arr[0];int t = arr[1];dis[y] = t;}boolean vis[] = new boolean[n];vis[0] = true;while(true){int min = Integer.MAX_VALUE;int index = -1;for(int i = 0 ; i < n; i ++){if(!vis[i] && dis[i] < min){min = dis[i];index = i;}}if(index == -1)break;vis[index] = true;// 遍历index点发出的边for (int[] arr : map[index]) {int v = arr[0];int t = arr[1];if (!vis[v] && dis[index] + t < dis[v]) {dis[v] = dis[index] + t;}}}// DFSres = 0;int val = values[0];values[0] = 0;dfs(0, values, map, maxTime, 0, val, dis);return res;}
}

相关文章:

Leetcode 2065. 最大化一张图中的路径价值(DFS / 最短路)

Leetcode 2065. 最大化一张图中的路径价值 暴力DFS 容易想到&#xff0c;从0点出发DFS&#xff0c;期间维护已经走过的距离&#xff08;时间&#xff09;和途径点的权值之和&#xff0c;若访问到0点则更新答案&#xff0c;若下一步的距离与已走过的距离和超出了maxTime&#…...

SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

CVPR2024 香港理工大学&OPPO&bytedancehttps://github.com/cswry/SeeSR?tabreadme-ov-file#-licensehttps://arxiv.org/pdf/2311.16518#page5.80 问题引入 因为有些LR退化情况比较严重&#xff0c;所以超分之后的结果会出现语义的不一致的情况&#xff0c;所以本文训…...

七月论文审稿GPT第5版:拿我司七月的早期paper-7方面review数据集微调LLama 3

前言 llama 3出来后&#xff0c;为了通过paper-review的数据集微调3&#xff0c;有以下各种方式 不用任何框架 工具 技术&#xff0c;直接微调原生的llama 3&#xff0c;毕竟也有8k长度了 效果不期望有多高&#xff0c;纯作为baseline通过PI&#xff0c;把llama 3的8K长度扩展…...

盘古5.0,靠什么去解最难的题?

文&#xff5c;周效敬 编&#xff5c;王一粟 当大模型的竞争开始拼落地&#xff0c;商业化在B端和C端都展开了自由生长。 在B端&#xff0c;借助云计算向千行万业扎根&#xff1b;在C端&#xff0c;通过软件App和智能终端快速迭代。 在华为&#xff0c;这家曾经以通信行业起…...

2.3章节Python中的数值类型

1.整型数值 2.浮点型数值 3.复数   Python中的数值类型清晰且丰富&#xff0c;主要分为以下几种类型&#xff0c;每种类型都有其特定的用途和特性。 一、整型数值 1.定义&#xff1a;整数类型用于表示整数值&#xff0c;如1、-5、100等。 2.特点&#xff1a; Python 3中的…...

每日Attention学习7——Frequency-Perception Module

模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息&#xff0c;更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…...

【从0实现React18】 (五) 初探react mount流程 完成核心递归流程

更新流程的目的&#xff1a; 生成wip fiberNode树标记副作用flags 更新流程的步骤&#xff1a; 递&#xff1a;beginWork归&#xff1a;completeWork 在 上一节 &#xff0c;我们探讨了 React 应用在首次渲染或后续更新时的整体更新流程。在 Reconciler 工作流程中&#xff…...

0-30 VDC 稳压电源,电流控制 0.002-3 A

怎么运行的 首先&#xff0c;有一个次级绕组额定值为 24 V/3 A 的降压电源变压器&#xff0c;连接在电路输入点的引脚 1 和 2 上。&#xff08;电源输出的质量将直接影响与变压器的质量成正比&#xff09;。变压器次级绕组的交流电压经四个二极管D1-D4组成的电桥整流。桥输出端…...

HTML5+CSS3+JS小实例:图片九宫格

实例:图片九宫格 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1…...

湘潭大学软件工程数据库总结

文章目录 前言试卷结构给学弟学妹的一些参考自己的一些总结 前言 自己可能很早很早之前就准备复习了&#xff0c;但是感觉还是没有学到要点&#xff0c;主要还是没啥紧迫的压力&#xff0c;我们是三月份开学&#xff0c;那时候实验室有朋友挺认真开始学习数据库了&#xff0c;…...

Codeforces Testing Round 1 B. Right Triangles 题解 组合数学

Right Triangles 题目描述 You are given a n m nm nm field consisting only of periods (‘.’) and asterisks (‘*’). Your task is to count all right triangles with two sides parallel to the square sides, whose vertices are in the centers of ‘*’-cells. …...

怎样将word默认Microsoft Office,而不是WPS

设置——>应用——>默认应用——>选择"word"——>将doc和docx都选择Microsoft Word即可...

C语言之进程的学习2

Env环境变量&#xff08;操作系统的全局变量&#xff09;...

web使用cordova打包Andriod

一.安装Gradel 1.下载地址 Gradle Distributions 2.配置环境 3.测试是否安装成功 在cmd gradle -v 二.创建vite项目 npm init vitelatest npm install vite build 三.创建cordova项目 1.全局安装cordova npm install -g cordova 2. 创建项目 cordova create cordova-app c…...

内卷情况下,工程师也应该了解的项目管理

简介&#xff1a;大家好&#xff0c;我是程序员枫哥&#xff0c;&#x1f31f;一线互联网的IT民工、&#x1f4dd;资深面试官、&#x1f339;Java跳槽网创始人。拥有多年一线研发经验&#xff0c;曾就职过科大讯飞、美团网、平安等公司。在上海有自己小伙伴组建的副业团队&…...

【解锁未来:深入了解机器学习的核心技术与实际应用】

解锁未来&#xff1a;深入了解机器学习的核心技术与实际应用 &#x1f48e;1.引言&#x1f48e;1.1 什么是机器学习&#xff1f; &#x1f48e;2 机器学习的分类&#x1f48e;3 常用的机器学习算法&#x1f48e;3.1 线性回归&#xff08;Linear Regression&#xff09;&#x1…...

1-3.文本数据建模流程范例

文章最前&#xff1a; 我是Octopus&#xff0c;这个名字来源于我的中文名–章鱼&#xff1b;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github &#xff1b;这博客是记录我学习的点点滴滴&#xff0c;如果您对 Python、Java、AI、算法有兴趣&#xff0c;可以关注我的…...

【FFmpeg】avformat_alloc_output_context2函数

【FFmpeg】avformat_alloc_output_context2函数 1.avformat_alloc_output_context21.1 初始化AVFormatContext&#xff08;avformat_alloc_context&#xff09;1.2 格式猜测&#xff08;av_guess_format&#xff09;1.2.1 遍历可用的fmt&#xff08;av_muxer_iterate&#xff0…...

Flask 缓存和信号

Flask-Caching Flask-Caching 是 Flask 的一个扩展&#xff0c;它为 Flask 应用提供了缓存支持。缓存是一种优化技术&#xff0c;可以存储那些费时且不经常改变的运算结果&#xff0c;从而加快应用的响应速度。 一、初始化配置 安装 Flask-Caching 扩展&#xff1a; pip3 i…...

基于weixin小程序农场驿站系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;农场资讯管理&#xff0c;用户管理&#xff0c;卖家管理&#xff0c;用户分享管理&#xff0c;分享类型管理&#xff0c;商品信息管理&#xff0c;商品类型管理 开发系统&#xff1a;Windows 架构模式…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...