当前位置: 首页 > news >正文

计算机网络八股文

计算机网络体系架构?

  • OSI结构:理论上的
    • 7应用层:定义了应用进程间通信和交互的规则,常见协议有HTTP、SFTP、DNS、WebSocket
    • 6表示层:数据的表示、安全、压缩。确保一个系统的应用层所发消息能被另一个系统的应用层读取。GIF、JEPG
    • 5会话层:建立、管理、终止会话,是用户应用程序和网络之间的接口。RPC、SQL
    • 4传输层:提供源端和目的端之间提供可靠的透明数据传输,传输层协议为不同主机上运行的进程提供了逻辑通信。TCP、UDP、SSH
    • 3网络层:将网络地址翻译成对应的物理地址,实现不同网络之间的路径选择。ICMP、IGMP、IP等
    • 2数据链路层:在物理层提供比特流服务的基础上、建立像零件点之间的数据链路。
    • 1物理层:建立、维护、断开物理连接。
  • TCP/IP结构:实际上的 应用 传输 网络 链路层
  • 五层结构:为了介绍原理而折中的,在这个基础上层层包装层层拆包

DNS的迭代查询和递归查询?

递归查询举例:

客户端想要解析 www.example.com 的IP地址,发送请求到本地DNS解析器:

  1. 本地解析器查询根DNS服务器。

  2. 根DNS服务器返回 .com TLD服务器地址。

  3. 本地解析器查询 .com TLD服务器。

  4. .com TLD服务器返回 example.com 的权威DNS服务器地址。

  5. 本地解析器查询 example.com 的权威DNS服务器。

  6. 权威DNS服务器返回 www.example.com 的IP地址。

  7. 本地解析器将IP地址返回给客户端。

迭代查询举例:

客户端想要解析 www.example.com 的IP地址,依次查询各个DNS服务器:

  1. 客户端查询本地DNS解析器。

  2. 本地解析器查询根DNS服务器。

  3. 根DNS服务器返回 .com TLD服务器地址。

  4. 本地解析器将 .com TLD服务器地址返回给客户端。

  5. 客户端查询 .com TLD服务器。

  6. .com TLD服务器返回 example.com 的权威DNS服务器地址。

  7. 客户端查询 example.com 的权威DNS服务器。

  8. 权威DNS服务器返回 www.example.com 的IP地址。

  9. 客户端获取到IP地址。

结论

递归查询和迭代查询是DNS查询的两种方式,各有优缺点。递归查询对客户端友好,但增加了DNS解析器的负担;迭代查询对解析器负担小,但增加了客户端的复杂性。实际应用中,客户端通常会使用递归查询,通过本地DNS解析器处理大部分的查询过程。

DNS解析过程?

常见端口:

  • 21:FTP
  • 22:SSH
  • 53:DNS解析
  • 80:HTTP
  • 443:HTTPS
  • 1080:sockets
  • 3306:mysql

常见状态码:

  • 1XX:临时的响应,客户端应继续请求。
  • 2XX:请求已成功被服务器接收。
  • 3XX:用来重定向。
  • 4XX:请求可能出错。
  • 5XX:服务器在尝试处理请求时发生了错误。
  • 404:表示客户端(如浏览器)请求的资源在服务器上不存在

GET和POST的区别?

  • 传参方式不同,一个在URL一个在请求体
  • 幂等性
  • GET大部分都被CDN缓存起来了

HTTP报文结构?

  • 请求报文:
    • 报文首部
      • 请求行
      • 请求首部字段
      • 通用首部字段
      • 实体首部字段
    • GET /index.html HTTP/1.1
      Host: www.javabetter.cn
      Accept: text/html
      User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3
      
    • 报文主体
  • 响应报文
    • 报文首部
      • 状态行
      • 响应首部字段
      • 通用首部字段
      • 实体首部字段
    • HTTP/1.0 200 OK
      Content-Type: text/plain
      Content-Length: 137582
      Expires: Thu, 05 Dec 1997 16:00:00 GMT
      Last-Modified: Wed, 5 August 1996 15:55:28 GMT
      Server: Apache 0.84
      <html><body>沉默王二很天真</body>
      </html>
      
    • 报文主体

URI 和 URL 有什么区别?

  • URI,统一资源标识符(Uniform Resource Identifier, URI)
  • URL,统一资源定位符(Uniform Resource Location),它是 URI 的一种子集,主要作用是提供资源的路径。

HTTP 1-3的区别?

  • 1.0
    • 无状态协议
    • 非持久连接,可设置Connection:keep-alive强制开启长连接
  • 1.1:
    • 持久连接
    • 支持在前一个响应到达之前发送下一个
  • 队头阻塞问题:如果第一个响应阻塞了,那么即使后面的响应准备好了也发不出去
  • 2.0:
    • 采用二进制协议,所以grpc基于2.0的话传递的时候是通过byteArray实现的,以前的是文本
    • 多路复用,一个TCP连接上进行多个HTTP请求或者相应,多个请求分解成独立的帧,交错发送,减轻了HTTP 1.x的队头阻塞问题,还是依赖顺序的
    • 头部压缩,减少带宽消耗,表示层实现gzip压缩
  • 3.0:
    • 3.0 基于 QUIC 协议,Quick UDP Connections
    • 真正实现了不同的流之间独立传输,2.0仍然需要保证顺序
    • 在传输过程就完成了TLS三次握手

HTTP长连接相关参数:

  • keep-alive
  • keep-alive timeout
  • TCP中也有三个参数,闲置多久之后就会间隔一个时间发送侦测包,发生这么多次没有响应就断开连接

HTTP和HTTPS

  • 在HTTP的基础上加入了SSL(安全套接字)/TLS(传输层安全)协议,确保传输过程是加密的。
  • 解决了什么问题:
    • 安全问题
    • TLS握手:
      • 客户端相服务器发送ClientHello消息,包括支持的TLS版本、随机数等等
      • 服务器回应ServerHello,选择一个客户端提议的版本,并发送数字证书
      • 客户端验证证书的合法性,生成一个对话密钥通过公钥加密后发送给服务器
      • 服务器私钥解密得到对话密钥
      • 加密通信
    • 涉及到了对称加密和非对称加密
      • 握手阶段密钥交换就是非对称
      • 传输就是对称

TCP的流量控制:

  • 三次握手协商窗口大小,单位是字节,最大是(2^16-1)<<14有个窗口扩展选项,大概1G
  • 会约定每次最多能发多少
  • 接收方窗口
  • 发送方窗口

拥塞控制:

  • 避免出现拥堵时,发送方的数据填满整个网络
  • 发送方维护一个cwnd,发送窗口的值是cwnd和滑动窗口可以接收窗口的min,这里单位是MSS
  • 慢启动:
    • 探测网络拥堵情况,每收到一个ACK,cwnd+1,单位是MSS,呈指数递增
  • 拥塞避免:
    • 当cwnd到达慢启动阈值sshresh,进入拥塞避免
    • 每收到一个ACK,cwnd=cwnd+1/cwnd,每个RTT就是+1
  • 拥塞发生:
    • 如果是RTO超时重传

      • sshresh=cwnd/2
      • cwnd=1
      • 进去慢启动
    • 如果是快速重传
      • cwnd=cwnd/2
      • sshresh=cwnd
      • 进入快速恢复
  • 快速恢复
    • 快速恢复算法认为,还有 3 个重复 ACK 收到,说明网络也没那么糟糕,所以没有必要像 RTO 超时那么强烈。
    • cwnd和sshresh已经被更新了
    • cwnd=sshresh+3,重传重复的那几个ACK,即丢失的那几个数据包
    • 再收到重复的cwnd=cwnd+1
    • 新的的话,cwnd=sshresh,再次进入拥塞避免

TCP的超时重传机制?

  • RTO,一定时间内没收到ACK,就触发,这个时间有算法
  • 快速重传,发送的数据有序列号,保证有序

    在上图,发送⽅发出了 1,2,3,4,5 份数据:

  • 第⼀份 Seq1 先送到了,于是就 Ack 回 2;
  • 结果 Seq2 因为某些原因没收到,Seq3 到达了,于是还是 Ack 回 2;
  • 后⾯的 Seq4 和 Seq5 都到了,但还是 Ack 回 2,因为 Seq2 还是没有收到;
  • 发送端收到了三个 Ack = 2 的确认,知道了 Seq2 还没有收到,就会在定时器过期之前,重传丢失的 Seq2
  • 最后,收到了 Seq2,此时因为 Seq3,Seq4,Seq5 都收到了,于是 Ack 回 6 。
  • SACK,带确认的,ACK是说从左往右第一个开始没数据的空白
  • D-SACK:告诉发送方哪些报文重复接收了,比如ACK没有到达,发送方重传了
  • ACK(Acknowledgment)号在TCP中代表的是接收方期望从发送方接收到的下一个字节的序列号。
  • SACK一个代表在快速重传的时候接收到了哪些
  • 一个代表了重复接收了哪些,在发送方没有收到ACK的情况重发的情况下

相关文章:

计算机网络八股文

计算机网络体系架构&#xff1f; OSI结构&#xff1a;理论上的 7应用层&#xff1a;定义了应用进程间通信和交互的规则&#xff0c;常见协议有HTTP、SFTP、DNS、WebSocket6表示层&#xff1a;数据的表示、安全、压缩。确保一个系统的应用层所发消息能被另一个系统的应用层读取…...

科普文:一文搞懂jvm原理(四)运行时数据区

概叙 科普文&#xff1a;一文搞懂jvm(一)jvm概叙-CSDN博客 科普文&#xff1a;一文搞懂jvm原理(二)类加载器-CSDN博客 科普文&#xff1a;一文搞懂jvm原理(三)执行引擎-CSDN博客 前面我们介绍了jvm&#xff0c;jvm主要包括两个子系统和两个组件&#xff1a; Class loader(类…...

《昇思25天学习打卡营第5天|数据变换 Transforms》

文章目录 前言&#xff1a;今日所学&#xff1a;1. Common Transforms2. Vision Transforms3. Text Transforms 前言&#xff1a; 我们知道在进行神经网络训练的时候&#xff0c;通常要将原始数据进行一系列的数据预处理操作才会进行训练&#xff0c;所以MindSpore提供了不同类…...

详细分析Oracle修改默认的时间格式(四种方式)

目录 前言1. 会话级别2. 系统级别3. 环境配置4. 函数格式化5. 总结 前言 默认的日期和时间格式由参数NLS_DATE_FORMAT控制 如果需要修改默认的时间格式&#xff0c;可以通过修改会话级别或系统级别的参数来实现 1. 会话级别 在当前会话中设置日期格式&#xff0c;这只会影响…...

以 Vue 3 项目为例,你是否经常遇到 import 语句顺序混乱的问题?要想解决它其实很容易!

大家好,我是CodeQi! 在项目开发过程中,我们经常会遇到项目中的 import 语句顺序混乱的问题。 这不仅会影响代码的可读性,还可能使我们代码在提交的时候产生不必要的冲突。 面对这种情况,要想解决它其实很容易。 通过合理的规范和自动化工具,我们可以确保 import 语句…...

mysql数据库ibdata文件被误删后恢复数据的方法

使用mysql数据库的时候不小心误删除了ibdata和ib_logfile文件&#xff0c;但是幸好.ibd文件还在。这种情况下其实数据还在并未丢失&#xff0c;丢失的是表结构。查询表数据时会报错&#xff1a;ERROR 1146 (42S02): Table ‘testdb.test’ doesn’t exist&#xff0c;其实是说表…...

eBPF技术揭秘:DeepFlow如何引领故障排查,提升运维效率

DeepFlow 实战&#xff1a;eBPF 技术如何提升故障排查效率 目录 DeepFlow 实战&#xff1a;eBPF 技术如何提升故障排查效率 微服务架构系统中各个服务、组件及其相互关系的全景 零侵扰分布式追踪&#xff08;Distributed Tracing&#xff09;的架构和工作流程 关于零侵扰持…...

C++视觉开发 三.缺陷检测

一.距离变换 1.概念和功能 距离变换是一种图像处理技术&#xff0c;用于计算图像中每个像素到最近的零像素&#xff08;背景像素&#xff09;的距离。它常用于图像分割、形态学操作和形状分析等领域。它计算图像中每个像素到最近的零像素&#xff08;背景像素&#xff09;的距…...

使用 Amazon Bedrock Converse API 简化大语言模型交互

本文将介绍如何使用 Amazon Bedrock 最新推出的 Converse API&#xff0c;来简化与各种大型语言模型的交互。该 API 提供了一致的接口&#xff0c;可以无缝调用各种大型模型&#xff0c;从而消除了需要自己编写复杂辅助功能函数的重复性工作。文中示例将展示它相比于以前针对每…...

第二十一章 函数(Python)

文章目录 前言一、定义函数二、函数参数三、参数类型四、函数返回值五、函数类型1、无参数&#xff0c;无返回值2、无参数&#xff0c;有返回值3、有参数&#xff0c;无返回值4、有参数&#xff0c;有返回值 六、函数的嵌套七、全局变量和局部变量1、局部变量2、全局变量 前言 …...

使用pyqt5编写一个七彩时钟

使用pyqt5编写一个七彩时钟 效果代码解析定义 RainbowClockWindow 类初始化用户界面显示时间方法 完整代码 在这篇博客中&#xff0c;我们将使用 PyQt5 创建一个简单的七彩数字时钟。 效果 代码解析 定义 RainbowClockWindow 类 class RainbowClockWindow(QMainWindow):def _…...

【Linux】:命令行参数

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux命令行参数的相关知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入…...

高考假期预习指南,送给迷茫的你

高考结束&#xff0c;离别了熟悉的地方&#xff0c;踏上远方。 你&#xff0c;&#xff0c;迷茫吗&#xff1f; 大学是什么&#xff1f;到了大学我该怎样学习&#xff1f;真像网上说的毕业即失业吗&#xff1f; 大学是一个让你学会一技之长的地方&#xff0c;到了大学找到自…...

独孤思维:负债了,还可以翻身吗

01 其实独孤早年也负债。 负债并不可怕。 可怕的是因为负债而催生的想要快速赚钱的心态。 越是有这种心态&#xff0c;越是不可能赚到钱。 相反&#xff0c;可能会让你陷入恶性循环中。 盲目付费&#xff0c;盲目寄希望于某个项目或者某个人。 当成唯一的救命稻草。 这…...

SwiftUI八与UIKIT交互

代码下载 SwiftUI可以在苹果全平台上无缝兼容现有的UI框架。例如&#xff0c;可以在SwiftUI视图中嵌入UIKit视图或UIKit视图控制器&#xff0c;反过来在UIKit视图或UIKit视图控制器中也可以嵌入SwiftUI视图。 本文展示如何把landmark应用的主页混合使用UIPageViewController和…...

RedHat9 | 内部YUM本地源服务器搭建

服务器参数 标识公司内部YUM服务器主机名yum-server网络信息192.168.37.1/24网络属性静态地址主要操作用户root 一、基础环境信息配置 修改主机名 [rootyum-server ~]# hostnamectl hostname yum-server添加网络信息 [rootyum-server ~]# nmcli connection modify ens160 …...

无偏归一化自适应心电ECG信号降噪方法(MATLAB)

心电信号作为一种生物信号&#xff0c;含有大量的临床应用价值的信息&#xff0c;在现代生命医学研究中占有重要的地位。但心电信号低频、低幅值的特点&#xff0c;使其在采集和传输的过程中经常受到噪声的干扰&#xff0c;使心电波形严重失真&#xff0c;从而影响后续的病情分…...

AI基本概念(人工智能、机器学习、深度学习)

人工智能 、 机器学习、 深度学习的概念和关系 人工智能 &#xff08;Artificial Intelligence&#xff09;AI- 机器展现出人类智慧机器学习 &#xff08;Machine Learning) ML, 达到人工智能的方法深度学习 &#xff08;Deep Learning&#xff09;DL,执行机器学习的技术 从范围…...

LabVIEW幅频特性测试系统

使用LabVIEW软件开发的幅频特性测试系统。该系统整合了Agilent 83732B信号源与Agilent 8563EC频谱仪&#xff0c;通过LabVIEW编程实现自动控制和数据处理&#xff0c;提供了成本效益高、操作简便的解决方案&#xff0c;有效替代了昂贵的专用仪器&#xff0c;提高了测试效率和设…...

校园卡手机卡怎么注销?

校园手机卡的注销流程可以根据不同的运营商和具体情况有所不同&#xff0c;但一般来说&#xff0c;以下是注销校园手机卡的几种常见方式&#xff0c;我将以分点的方式详细解释&#xff1a; 一、线上注销&#xff08;通过手机APP或官方网站&#xff09; 下载并打开对应运营商的…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...