16、matlab求导、求偏导、求定积分、不定积分、数值积分和数值二重积分
0)前言
在MATLAB中,对函数进行不同形式的求导、求积分操作是非常常见的需求,在工程、科学等领域中经常会用到。以下是关于求导、求积分以及数值积分的简介:
-
求导:在MATLAB中可以使用
diff函数对函数进行求导操作。diff函数有多种用法,可以求一阶、高阶导数,也可以求偏导数。例如,求函数f(x)的一阶导数可以使用diff(f, x),求函数f(x, y)对x的偏导数可以使用diff(f, x)。 -
求定积分和不定积分:在MATLAB中可以使用
int函数对函数进行定积分和不定积分的计算。int函数可以对输入的表达式进行积分计算。例如,求函数f(x)在区间[a, b]上的定积分可以使用int(f, a, b),求函数f(x)的不定积分可以使用int(f, x)。 -
数值积分:在MATLAB中,可以使用
integral函数进行数值积分计算。integral函数可以对给定的函数进行数值积分计算,常用于无法通过解析方法得到积分的情况。例如,对函数f(x)在区间[a, b]上进行数值积分可以使用integral(@(x) f(x), a, b)。 -
数值二重积分:在MATLAB中,可以使用
integral2函数进行数值二重积分计算。integral2函数可以对给定的二元函数进行数值积分计算,常用于求解二维区域上的积分。例如,对二元函数f(x, y)在区域D上进行数值二重积分可以使用integral2(@(x, y) f(x, y), x_min, x_max, y_min, y_max)。
以上是对MATLAB中求导、求积分操作的简介,通过灵活使用这些函数,可以方便地进行各种类型的导数和积分计算。值得注意的是,在进行数值积分时,可以根据具体情况选择适合的数值积分方法,以获得更精确和高效的计算结果。
1、matlab求导,diff()函数
1)一阶导数
语法:diff(f(x)):求一阶导数 //diff(f(x),n):求n阶导数(n为具体正整数)
以函数(cos(x)+sin(x)-x^2)的一阶导数为例
一阶导数代码:
yms x;%声明符号变量x
f(x)=cos(x)+sin(x)-x^2;%定义原式子
dy=diff(f(x))%求一阶导数dy =cos(x) - 2*x - sin(x)
2)n阶倒数
以函数(cos(x)+sin(x)-x^2)二三阶倒数为例
二三阶导数代码:
syms x;%声明符号变量x
f(x)=cos(x)+sin(x)-x^2;%定义原式子
dy1=diff(f(x),2)
% pretty(dy1)
dy2=diff(f(x),3)dy1 =- cos(x) - sin(x) - 2dy2 =sin(x) - cos(x)
2、matlab求偏导,diff()函数
语法:diff(f(x)):求一阶导数 //diff(f(x),n):求n阶导数(n为具体正整数)
以函数(f(x1,x2)=sin(x1)+exp(x2))求解x1和x2偏倒为例
1)一阶偏导
x1求偏导代码:
syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
%求一阶偏导
dy1=diff(f(x1,x2),x1)dy1 =cos(x1)
x2求偏导代码:
syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy2=diff(f(x1,x2),x2)dy2 =exp(x2)
2)n阶偏导
x1二阶偏导代码:
syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy3=diff(f(x1,x2),x1,2)dy3 =-sin(x1)
x2三阶偏导代码:
syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy4=diff(f(x1,x2),x2,3)dy4 =exp(x2)
3、matlab求积分,int()函数
1)不定积分求解
语法:牛顿——莱布尼兹公式求解积分
代码:
syms x;%声明变量x
y1=x^2;%定义原式
fy1=int(y1,x)%不定积分fy1 =x^3/3
2)定积分求解
代码:
syms x;%声明变量x
y1=x^2;%定义原式
% fy1=int(y1,x)%不定积分
fy2=int(y1,x,0,1)%定积分fy2 =1/3syms x;%声明变量x
y1=x^2;%定义原式
% fy1=int(y1,x)%不定积分
% fy2=int(y1,x,0,1)%定积分
fy3=int(y1,x,-inf,+inf)fy3 =Inf
4、数值积分
1)梯形法计算积分 trapz()函数
语法:I=trapz(x,y) %适用于被积函数为离散数据
代码:
format long%显示格式设置
fy=@(x)sin(x)./x%@句柄的用法
x1=pi/6:pi/100:pi;
y1=fy(x1);
%绘图
bar(y1)
%定积分
s1=trapz(x1,y1)fy =包含以下值的 function_handle:@(x)sin(x)./xs1 =1.336217975152237
视图效果:

2)基于变步长辛普森计算积分
语法:[I,n]=quad(‘fname’,a,b,Tol,trace)%I积分值/n积分函数调用次数
参数介绍fname:被积函数名 a,b积分界限 TOL精度 trace是否展现积分过程
基于变步长辛普森计算积分与梯形法计算积分对比代码:
fy=@(x)sin(x)./x%被积函数
s=quad(fy,pi/6,pi,0.00001,1)%变步长辛普森计算积分
x1=pi/6:pi/100:pi;
y1=fy(x1);
s1=trapz(x1,y1)%梯形法计算积分fy =包含以下值的 function_handle:@(x)sin(x)./x9 0.5235987756 7.10994777e-01 0.619018804711 1.2345935530 1.19600432e+00 0.626190692913 2.4305978762 7.10994777e-01 0.0910383671s =1.336247864730292s1 =1.336217975152237
5、数值二重积分 dblquad()函数
语法:I=dblquad(f,a,b,c,d,tol,method),求f(x,y)在[a,b]、[c,d]区域上的二重积分
TOL精度 Method:计算一维积分(quad/quadl)
代码:
f=@(x,y)exp(x.^2).*sin(x.^2+y.^2)I1=dblquad(f,-2,2,-1,1)I2=dblquad(f,-2,2,-1,1,1e-9,'quadl')I3=dblquad(f,-2,2,-1,1,1e-9,'quad')%默认f =包含以下值的 function_handle:@(x,y)exp(x.^2).*sin(x.^2+y.^2)I1 =-9.400793312509709I2 =-9.400792842118586I3 =-9.400792842296315
6、数值积分 integral()函数
语法:q = integral(fun,xmin,xmax,Name,Value)
代码:
fun = @(x) exp(-x.^2).*log(x).^2;
q = integral(fun,0,Inf)
q1 = integral(fun,0,Inf,'RelTol',1e-9)q =1.947522220295560q1 =1.947522180314255
7、二重积分 integral2()函数
语法:q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value)
代码:
fun = @(x,y) 1./( sqrt(x + y) .* (1 + x + y).^2 );
q1= integral2(fun,0,1,0,1)
q2= integral2(fun,0,1,0,1,'RelTol',1e-9)q1 =0.369530192486637q2 =0.369530180500556
8、总结
在MATLAB中,求导、求偏导、求定积分、不定积分、数值积分和数值二重积分是信号处理、数学建模等领域中常用的操作。以下是对这些操作的总结:
-
求导:
- 一阶导数:使用
diff函数。 - 多阶导数:连续多次使用
diff函数。 - 求偏导数:指定对哪个变量求偏导数。
- 一阶导数:使用
-
求定积分和不定积分:
- 定积分:使用
int函数,指定积分上下限。 - 不定积分:使用
int函数,只指定被积分的变量。
- 定积分:使用
-
数值积分:
- 一维数值积分:使用
integral函数,指定被积函数和积分区间。 - 二维数值积分:使用
integral2函数,指定被积函数和积分区域。
- 一维数值积分:使用
-
注意事项:
- 在使用数值积分函数时,可以指定积分精度和其他参数,以获得更精确的结果。
- 对于复杂函数或区域,可以使用数值积分来近似求解积分值。
- 在处理数值积分结果时,要注意结果的有效性和精度,可以使用MATLAB的调试工具进行验证。
综上所述,MATLAB提供了丰富的函数和工具,可以方便地进行导数、积分和数值积分等操作。这些操作在数学建模、信号处理、科学计算等领域中具有重要的应用意义,能够帮助用户进行数据分析、模拟和预测等工作。在实际应用中,根据具体需求选择合适的函数和方法,以实现准确、高效的数据处理和计算。
相关文章:
16、matlab求导、求偏导、求定积分、不定积分、数值积分和数值二重积分
0)前言 在MATLAB中,对函数进行不同形式的求导、求积分操作是非常常见的需求,在工程、科学等领域中经常会用到。以下是关于求导、求积分以及数值积分的简介: 求导:在MATLAB中可以使用diff函数对函数进行求导操作。diff…...
MySQL 9.0创新版发布!功能又进化了!
作者:IT邦德 中国DBA联盟(ACDU)成员,10余年DBA工作经验, Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主,全网粉丝10万 擅长主流Oracle、MySQL、PG、高斯及Greenplum备份恢复, 安装迁移,性能优化、故障…...
后端系统的安全性
后端系统的安全性 后端系统的安全性是任何Web应用或服务的核心组成部分,它涉及保护数据、用户隐私以及系统免受恶意攻击。以下是后端安全的一些关键点: 认证和授权:确保只有经过身份验证的用户才能访问特定资源。这通常包括使用用户名/密码…...
.net 百度翻译接口核心类
百度翻译api :http://developer.baidu.com/wiki/index.php?title帮助文档首页/百度翻译/翻译AP 核心翻译类 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Newtonsoft.Json; using System.Net; using System.I…...
安卓应用开发学习:通过腾讯地图SDK实现定位功能
一、引言 这几天有些忙,耽误了写日志,但我的学习始终没有落下,有空我就会研究《 Android App 开发进阶与项目实战》一书中定位导航方面的内容。在我的手机上先后实现了“获取经纬度及地理位置描述信息”和“获取导航卫星信息”功能后&#x…...
iptable精讲
SNAT策略 SNAT策略的典型应用环境 局域网主机共享单个公网IP地址接入Internet SNAT策略的原理 源地址转换,Source Network Address Translantion 修改数据包的源地址 部署SNAT策略 1.准备二台最小化虚拟机修改主机名 主机名:gw 主机名࿱…...
2024 年如何构建 AI 软件
人工智能 (AI) 是当今 IT 行业最热门的话题,受到大型科技公司、大型企业和投资者的青睐。如果有人不参与 AI,他们就出局了。虽然“AI 泡沫”一词尚未公开使用,但街上的每个人都可能听说过 AI 将取代我们的工作(可能不会࿰…...
Python实战,桌面小游戏,剪刀石头布
注意:本文的下载教程,与以下文章的思路有相同点,也有不同点,最终目标只是让读者从多维度去熟练掌握本知识点。 下载教程: Python项目开发实战_桌面小游戏-剪刀石头布_编程案例解析实例详解课程教程.pdf 创建一个基于Python的桌面小游戏“剪刀石头布”是一个很好的编程实践…...
Hadoop权威指南-读书笔记-01-初识Hadoop
Hadoop权威指南-读书笔记 记录一下读这本书的时候觉得有意思或者重要的点~ 第一章—初识Hadoop Tips: 这个引例很有哲理嘻嘻😄,道出了分布式的灵魂。 1.1 数据!数据! 这一小节主要介绍了进入大数据时代,面…...
HttpServletResponse设置headers返回,发现headers中缺少“Content-Length“和“Content-Type“两个参数。
业务中需要将用httpUtils请求返回的headers全部返回,塞到HttpServletResponse中,代码如下: HttpServletResponse response;// 返回headers Arrays.stream(httpResponse.getHeaders()).forEach(header -> response.setHeader(header.getNa…...
GraphPad Prism生物医学数据分析软件下载安装 GraphPad Prism轻松绘制各种图表
Prism软件作为一款功能强大的生物医学数据分析与可视化工具,其绘图功能尤为突出。该软件不仅支持绘制基础的图表类型,如直观明了的柱状图、展示数据分布的散点图,以及描绘变化趋势的曲线图,更能应对复杂的数据呈现需求,…...
7/1 uart
uart4.c #include "uart4.h"//UART4_RX > PB2 //UART4_TX > PG11char rebuf[51] {0}; //rcc/gpio/uart4初始化 void hal_uart4_init() {/********RCC章节初始化*******///1.使能GPIOB组控制器 MP_AHB4ENSETR[1] 1RCC->MP_AHB4ENSETR | (0x1 << 1)…...
zdppy_api+vue3+antd开发前后端分离的预加载卡片实战案例
后端代码 import api import upload import timesave_dir "uploads"async def rand_content(request):key api.req.get_query(request, "key")time.sleep(0.3)return api.resp.success(f"{key} " * 100)app api.Api(routes[api.resp.get(&qu…...
别小看手机导航,这些隐藏功能大部分人可能都不知道
在科技日新月异的今天,手机导航已经成为我们日常生活中不可或缺的一部分。它不仅仅是指引我们前往目的地的工具,更隐藏着许多黑科技功能,极大地丰富了我们的出行体验。 今天,让我们一起探索手机导航中那些鲜为人知却大有用处的隐…...
Lua实现链表(面向对象应用)
Lua实现面向对象 面向对象核心三要素Lua面向对象大致原理面向对象示例继承与多态示例 面向对象核心三要素 1.封装:对一个事物的抽象为一些属性和行为动作的集合,封装将属性和行为动作(操作数据的方法)绑定在一起,并隐藏…...
每隔一个小时gc一次的问题
原文地址https://www.cnblogs.com/jiangxinlingdu/p/7581064.html 设置一下这个 -XX:ExplicitGCInvokesConcurrent 或 -XXExplicitGCInvokesConcurrentAndUnloadsClasses 并且检查一下,并下面的值设置变大 java.rmi.dgc.leaseValue sun.rmi.dgc.client.gcInterv…...
VBA数据库解决方案第十二讲:如何判断数据库中数据表是否存在
《VBA数据库解决方案》教程(版权10090845)是我推出的第二套教程,目前已经是第二版修订了。这套教程定位于中级,是学完字典后的另一个专题讲解。数据库是数据处理的利器,教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…...
五、Spring IoCDI ★ ✔
5. Spring IoC&DI 1. IoC & DI ⼊⻔1.1 Spring 是什么?★ (Spring 是包含了众多⼯具⽅法的 IoC 容器)1.1.1 什么是容器?1.1.2 什么是 IoC?★ (IoC: Inversion of Control (控制反转))总…...
计算机网络八股文
计算机网络体系架构? OSI结构:理论上的 7应用层:定义了应用进程间通信和交互的规则,常见协议有HTTP、SFTP、DNS、WebSocket6表示层:数据的表示、安全、压缩。确保一个系统的应用层所发消息能被另一个系统的应用层读取…...
科普文:一文搞懂jvm原理(四)运行时数据区
概叙 科普文:一文搞懂jvm(一)jvm概叙-CSDN博客 科普文:一文搞懂jvm原理(二)类加载器-CSDN博客 科普文:一文搞懂jvm原理(三)执行引擎-CSDN博客 前面我们介绍了jvm,jvm主要包括两个子系统和两个组件: Class loader(类…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
