【深度学习】pytorch训练中的一个大坑

使用的命令:iostat -x 5
可以看到 ssd的利用率已经满了。
之前在的数据集放在了 hdd上,训练结果特别慢。
所以我把它移动到了ssd上,然后训练参数用的 resume,
但是!!!!它把历史记住了,仍然不从ssd上来取数据。
配置文件的路径也换了,但它还是会去找旧的。

现在的100% 是扫描数据的100%
因数数据集15G~20G,还是比较多的。
engine/trainer: task=detect, mode=train, model=/home/justin/Desktop/code/python_project/Jersey-Number/yolov8n.pt, data=/home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/data.yaml, epochs=1000, time=None, patience=100, batch=64, imgsz=640, save=True, save_period=-1, cache=False, device=[0, 1], workers=8, project=None, name=train70, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train70
Overriding model.yaml nc=80 with nc=4from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] 22 [15, 18, 21] 1 752092 ultralytics.nn.modules.head.Detect [4, [64, 128, 256]]
Model summary: 225 layers, 3011628 parameters, 3011612 gradients, 8.2 GFLOPsTransferred 319/355 items from pretrained weights
DDP: debug command /home/justin/miniconda3/bin/python -m torch.distributed.run --nproc_per_node 2 --master_port 41127 /home/justin/.config/Ultralytics/DDP/_temp_uog7ddsr140402595641744.py
WARNING:__main__:
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
Ultralytics YOLOv8.2.1 🚀 Python-3.11.0 torch-2.3.0+cu121 CUDA:0 (NVIDIA GeForce RTX 4090, 24210MiB)CUDA:1 (NVIDIA GeForce RTX 4090, 24188MiB)
TensorBoard: Start with 'tensorboard --logdir runs/detect/train70', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4
Transferred 319/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
/home/justin/miniconda3/lib/python3.11/site-packages/torch/nn/modules/conv.py:456: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)return F.conv2d(input, weight, bias, self.stride,
AMP: checks passed ✅
train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/
train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/
train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/
train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/train: Scanning /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/
我就是看这里:
train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,42a000df17be3d.jpg: 1 duplicate labels removed
train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,575c000f3f01e40.jpg: 1 duplicate labels removed
train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,70d2000c58fbf86.jpg: 1 duplicate labels removed
train: WARNING ⚠️ /home/justin/Desktop/code/python_project/Jersey-Number/datasets/20240511_four_in_1/data_head_person_hoop_number/train/images/284193,880000198e8148.jpg: 1 duplicate labels removed
看出路径不对了,然后from scratch开始训练,就好使了。
然而并无卵用,确实换到ssd上了,还是很差,应该是碎文件所致,哎。。。所以,深度学习级别的hello world 用plk存储文件是有道理的,为了不让他那么碎啊 =====个人理解啊。
相关文章:
【深度学习】pytorch训练中的一个大坑
使用的命令:iostat -x 5 可以看到 ssd的利用率已经满了。 之前在的数据集放在了 hdd上,训练结果特别慢。 所以我把它移动到了ssd上,然后训练参数用的 resume, 但是!!!!它把历史记住…...
python全局解释器锁(GIL)
文章目录 1.cpu工作方式2.python全局解释器锁与多线程3.其他语言的多线程4.如何解决假的多线程 1.cpu工作方式 先来先服务(First Come, First Served,FCFS): 最简单的调度算法,按照作业或进程到达的顺序依次执行。没有…...
无人机的起源
无人机起源于20世纪初的早期实验阶段,并随着技术进步逐步发展。无人机,作为现代科技领域中的一项重要创新,已经在全球范围内展现出其巨大的潜力和应用价值。 无人机的历史可以追溯到1917年,美国人艾德温.奥斯特林发明了“飞行训练…...
专题六:Spring源码之初始化容器BeanFactory
上一篇咱们通过一个例子介绍初始化容器上下文相关内容,并通过两个示例代码看到了Spring在设计阶段为我预留的扩展点,和我们应该如何利用这两个扩展点在Spring初始化容器上下文阶段为我们提供服务。这一篇咱们接着往下看。 老这样子下回到refresh方法上来…...
缓存双写一致性(笔记)
缓存更新方案 旁路缓存模式 这是比较多的 旁路缓存模式:缓存有就返回,没有数据库查询,放入缓存返回。 还有些常用缓存策略 读穿透模式 读穿透和旁路很相似,程序不需要关注从哪里读取数据,它只需要从缓存查询数据。…...
运动馆预约管理系统设计
设计一个运动馆预约管理系统,需要考虑到用户需求、系统功能、技术实现和用户体验等多个方面。以下是一个基本的设计框架: 1. 系统目标 提供便捷的运动场地预约服务。 实现运动馆资源的有效管理和利用。 支持在线支付,提高交易效率。 提供数…...
第五届计算机、大数据与人工智能国际会议(ICCBD+AI 2024)
随着科技的飞速发展,计算机、大数据和人工智能等前沿技术已成为推动社会进步的重要力量。为了加强这一领域的学术交流与合作,促进技术创新与发展,第五届计算机、大数据与人工智能国际会议(ICCBDAI 2024)将于2024年11月…...
高效的向量搜索算法——分层可导航小世界图(HNSW)
最近在接触大模型相关内容,发现一种高效的向量搜索算法HNSW,这里做一下记录。 在之前自己也接触过一段时间的复杂网络(网络科学),没想到,将网络科学的思想引入到向量搜索算法中,可以产生令人眼前…...
【MySQL备份】Percona XtraBackup全量备份实战篇
目录 1. 前言 2.准备工作 2.1.环境信息 2.2.创建备份目录 2.3.配置/etc/my.cnf文件 2.4.授予root用户BACKUP_ADMIN权限 3.全量备份 4.准备备份 5.数据恢复 6.总结 "实战演练:利用Percona XtraBackup执行MySQL全量备份操作详解" 1. 前言 本文…...
港口危险货物安全管理人员考试题库(含答案)
一、单选题 1.化学品安全标签内容中警示词有( )种分别进行危害程度的警示。 A、3 B、4 C、5 参考答案:A 2.运输放射性物品,应当使用( )的放射性物品运输包装容器(以下简称运输容器)。 A、专业 B、专用 C、统一 D、定制 参考答案:B 3.库区仪表及计算机监控管理系…...
什么是 JVM( Java 虚拟机),它在 Java 程序执行中扮演什么角色?
JVM,全称Java Virtual Machine,中文译作“Java虚拟机”,它是运行Java程序的软件环境,也是Java语言的核心部分之一。 想象一下,如果你是一位环球旅行家,每到一个新的国家,都需要学习当地的语言才…...
Python容器 之 列表--下标和切片
列表的切片 得到是 新的列表字符串的切片 得到是 新的字符串 如果下标 不存在会报错 list1 [1, 3.14, "hello", False] print(list1)# 获取 列表中 第一个数据 print(list1[0]) # 1# 获取列表中的最后一个数据 print(list1[-1]) # [False]# 获取中间两个数 即 3.1…...
Docker 运行Nacos无法访问地址解决方法
参考我的上一篇文章去配置好镜像加速器,镜像加速器不是配置越多越好,重试次数多了会失败 Dockerhub无法拉取镜像配置阿里镜像加速器-CSDN博客 错误的尝试 最开始按照网上的方式去配了一大堆,发现下不下来。 镜像源地址:https:…...
Stable Diffusion 商业变现与绘画大模型多场景实战
前言 ai绘画软件Stable Diffusion是一种通过模拟扩散过程,将噪声图像转化为目标图像的文生图模型,具有较强的稳定性和可控性,可以将文本信息自动转换成高质量、高分辨率且视觉效果良好、多样化的图像。在日常工作中,ai绘画软件St…...
[CocosCreator]CocosCreator网络通信:https + websocket + protobuf
环境 cocos creator版本:3.8.0 开发语言:ts 操作系统:windows http部分 直接使用 XMLHttpRequest 创建http请求 // _getHttpUrl 方法自己写字符串拼接public httpPostJsonRequest(uri: string, headData: any, data: any, cb: Function…...
并发控制-事务的调度、数据不一致问题(更新丢失、脏读、不可重复读)、非串行调度的的可串行化
一、引言 1、数据库管理系统DBMS的事务处理技术实现的另一个主要功能部分是并发控制机制。并发控制机制完成的功能就是对并发执行的事务进行控制,保证事务的隔离性,从而进一步保持数据库的一致性。 2、事务的并发控制就是对并发执行的不同事务中的数据…...
Golang | Leetcode Golang题解之第202题快乐数
题目: 题解: func isHappy(n int) bool {cycle : map[int]bool{4: true, 6: true, 37: true, 58: true, 89: true, 145: true, 42: true, 20: true}for n ! 1 && !cycle[n] {n step(n)}return n 1 }func step(n int) int {sum : 0for n > …...
算法:哈希表
目录 题目一:两数之和 题目二:判定是否互为字符重排 题目三:存在重复元素I 题目四:存在重复元素II 题目五:字母异位词分组 关于哈希表 哈希表就是存储数据的容器 哈希表的优势是:快速查找某个元素O(…...
自然语言处理基本知识(1)
一 分词基础 NLP:搭建了计算机语言和人类语言之间的转换 1 精确分词,试图将句子最精确的分开,适合文本分析 >>> import jieba >>> content "工信处女干事每月经过下属科室" >>> jieba.cut(content,cut_all …...
Java中的数据加密与安全传输
Java中的数据加密与安全传输 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨一下在Java中如何实现数据加密与安全传输。 随着互联网的普及和网络…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
