【机器学习】基于层次的聚类方法:理论与实践
🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
- 基于层次的聚类方法:理论与实践
- 引言
- 1. 层次聚类基础
- 1.1 概述
- 1.2 距离度量
- 2. 算法实现步骤
- 2.1 凝聚型聚类步骤
- 2.2 分裂型聚类步骤
- 3. 树状聚类图(Dendrogram)
- 4. 优缺点
- 4.1 优点
- 4.2 缺点
- 5. 实践应用
- 5.1 生物信息学
- 5.2 社交网络分析
- 5.3 图像分割
- 6. 结论
基于层次的聚类方法:理论与实践

引言
在数据科学与机器学习领域,聚类算法是无监督学习的重要组成部分,用于探索数据的内在结构,识别数据点之间的相似性并将其分组成有意义的簇。层次聚类(Hierarchical Clustering)作为一种经典的聚类方法,因其能够提供数据点之间层次关系的直观树状图(又称树状聚类图或 dendrogram),在生物学、社会网络分析、图像分割等多个领域有着广泛的应用。本文将深入探讨层次聚类的基本概念、算法类型、实现步骤、优缺点以及实际应用案例,帮助读者全面理解这一重要算法。
1. 层次聚类基础
1.1 概述
层次聚类算法通过逐步合并或分裂数据点(或簇)来构建一个层次结构。根据合并或分裂的方向,层次聚类可分为两种主要类型:凝聚型(Agglomerative)和分裂型(Divisive)。
- 凝聚型聚类:从每个数据点自成一簇开始,逐步合并最相似的簇,直至所有数据点合并成一个簇或达到预设的终止条件。
- 分裂型聚类:初始将所有数据作为一个簇,然后逐渐分裂成越来越小的簇,直到每个数据点成为一个独立的簇或满足终止条件。

1.2 距离度量
层次聚类算法的关键在于如何定义数据点或簇之间的相似度或距离。常见的距离度量包括欧氏距离、曼哈顿距离、余弦相似度和Jaccard相似度等。
2. 算法实现步骤
2.1 凝聚型聚类步骤
- 初始化:每个数据点视为一个簇。
- 计算距离:根据所选距离度量,计算每对簇间的距离。
- 合并簇:选择距离最近的两个簇合并为一个新的簇。
- 更新距离:重新计算新簇与其他簇之间的距离,常用方法有单连接(最小距离)、全连接(最大距离)、平均连接(簇间所有点对距离的平均)和重心连接。
- 重复步骤3-4,直到满足终止条件(如指定的簇数量、距离阈值或达到最大迭代次数)。
2.2 分裂型聚类步骤
分裂型聚类的步骤与凝聚型相反,从一个包含所有数据点的大簇开始,根据某种准则(如簇内差异最大化)逐步分裂簇,直至达到预定的簇数量或分裂标准。
3. 树状聚类图(Dendrogram)

树状聚类图是层次聚类结果的图形化展示,横轴表示数据点或簇,纵轴表示合并或分裂时的距离。通过设定一个截断阈值,可以从dendrogram中得到一个特定数量的簇。
4. 优缺点
4.1 优点
- 直观性:树状图提供了数据点间关系的直观展示。
- 灵活性:用户可以根据需要选择不同的距离度量和簇合并规则。
- 可解释性:层次结构易于理解和解释,便于发现数据的层次结构。
4.2 缺点
- 计算复杂度:随着数据点数量的增加,计算距离矩阵的时间复杂度和空间复杂度呈平方级增长。
- 选择难题:确定最佳的簇数目较为困难,通常依赖于主观判断或额外的评估标准。
- 敏感性:对初始距离度量和连接准则敏感,不同的选择可能导致显著不同的聚类结果。
5. 实践应用
5.1 生物信息学
在基因表达数据分析中,层次聚类用于识别具有相似表达模式的基因或样本,帮助理解基因功能和疾病机制。
5.2 社交网络分析
通过对社交网络中的用户或社区进行层次聚类,可以发现网络中的子群结构,理解用户之间的互动模式和影响力传播路径。

5.3 图像分割
在计算机视觉领域,层次聚类可用于图像分割,通过将像素点根据颜色、纹理等特征聚类,实现对图像内容的有效划分。
6. 结论
层次聚类作为一种强大的无监督学习工具,为复杂数据的组织和理解提供了有效的途径。尽管存在计算复杂度高和簇数选择困难等局限性,但通过合理的参数选择和优化策略,层次聚类在众多领域展现出其独特的价值和应用潜力。随着算法理论的进一步发展和计算资源的不断进步,层次聚类方法有望在未来的数据分析和机器学习任务中扮演更加重要的角色。
相关文章:
【机器学习】基于层次的聚类方法:理论与实践
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 基于层次的聚类方法:理论与实践引言1. 层次聚类基础1.1 概述1.2 距离…...
C# 验证PDF数字签名的有效性
数字签名作为PDF文档中的重要安全机制,不仅能够验证文件的来源,还能确保文件内容在传输过程中未被篡改。然而,如何正确验证PDF文件的数字签名,是确保文件完整性和可信度的关键。本文将详细介绍如何使用免费.NET控件通过C#验证PDF签…...
2小时动手学习扩散模型(pytorch版)【入门版】【代码讲解】
2小时动手学习扩散模型(pytorch版) 课程地址 2小时动手学习扩散模型(pytorch版) 课程目标 给零基础同学快速了解扩散模型的核心模块,有个整体框架的理解。知道扩散模型的改进和设计的核心模块。 课程特色…...
Centos7网络配置(设置固定ip)
文章目录 1进入虚拟机设置选中【网络适配器】选择【NAT模式】2 进入windows【控制面板\网络和 Internet\网络和共享中心\更改适配器设置】设置网络状态。3 设置VM的【虚拟网络编辑器】4 设置系统网卡5 设置虚拟机固定IP 刚安装完系统,有的人尤其没有勾选自动网络配置…...
英伟达被“压制”的25年
十九世纪中叶的美国西部,掀起了一场轰轰烈烈的淘金热,但最终赚到钱的,并不是拿命去赌的淘金者。一个名叫萨姆布瑞南的商人,通过向淘金者出售铲子,成了加州历史上第一位百万富翁。 每一次风口出现时,总有企…...
windows安装Gitblit还是Bonobo Git Server
Gitblit 和 Bonobo Git Server 都是用于托管Git仓库的工具,但它们是基于不同平台的不同软件。 Gitblit 是一个纯 Java 写的服务器,支持托管 Git,Mercurial 和 SVN 仓库。它需要 Java 运行环境,适合在 Windows、Linux 和 Mac 平台…...
仪器校准的概念与定义,计量校准是什么?
仪器校准的定义,在之前所颁布的《国际计量学词汇 基础和通用概念及相关术语》文件中,已经有了明确说明,而该文件做了修改以后,在后续新的定义中,仪器校准具体被分为两部分,第一步是将被计量仪器和计量校准的…...
Vue3+Pinia
1.单纯调接口(安装pinia及引入如下第一张图) 1.npm install pinia2.在main.js里引入即可import { createPinia } from piniaapp.use(createPinia()) 1.stores建立你文件的ts、内容如下:1-1 import { defineStore } from pinia1-2 import { findPageJobSet } from …...
label studio数据标注平台的自动化标注使用
(作者:陈玓玏) 开源项目,欢迎star哦,https://github.com/data-infra/cube-studio 做图文音项目过程中,我们通常会需要进行数据标注。label studio是一个比较好上手的标注平台,可以直接搜索…...
高并发场景下的热点key问题探析与应对策略
目录 一、问题描述 二、发现机制 三、解决策略分析 (一)解决策略一:多级缓存策略 客户端本地缓存 代理节点本地缓存 (二)解决策略二:多副本策略 (三)解决策略三:热点…...
学习一下C++中的枚举的定义
目录 普通枚举 强类型枚举 普通枚举 枚举类型在C中是通过关键字enum来定义的。下面是一个简单的例子: enum Color { RED, GREEN, BLUE }; 在这个例子中,我们定义了一个名为Color的枚举类型,它包含了三个枚举值:RED、GRE…...
开发一套java语言的智能导诊需要什么技术?java+ springboot+ mysql+ IDEA互联网智能3D导诊系统源码
开发一套java语言的智能导诊需要什么技术?java springboot mysql IDEA互联网智能3D导诊系统源码 医院导诊系统是一种基于互联网和3D人体的智能化服务系统,旨在为患者提供精准、便捷的医院就诊咨询服务。该系统整合了医院的各种医疗服务资;智慧…...
C++| STL之string
前言:最近在做LeetCode算法题,C字符串通常都是string作为输入,所以补充一下STL里面string。在介绍的具体使用的时候,会补充char字符串相关的进行对比。 string 创建大小和容量遍历字符串比较插入字符拼接字符串分配内存查找截取分…...
[数据集][目标检测]游泳者溺水检测数据集VOC+YOLO格式4599张2类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4599 标注数量(xml文件个数):4599 标注数量(txt文件个数):4599 标注…...
JAVA实现麦克风说话同声传译
一、能力与场景说明 同声传译,又称同步口译或同声翻译,是一种专业的口译形式,指的是在讲话者发言时,口译员几乎同时将讲话内容翻译成目标语言。这种翻译方式通常用于国际会议、高级别政治或商业会谈、研讨会和其他需要即时多语言…...
LabVIEW与PLC通讯方式及比较
LabVIEW与PLC之间的通讯方式多样,包括使用MODBUS协议、OPC(OLE for Process Control)、Ethernet/IP以及串口通讯等。这些通讯方式各有特点,选择合适的通讯方式可以提高系统的效率和稳定性。以下将详细介绍每种通讯方式的特点、优点…...
2024/6/30 英语每日一段
Years of economic and political turbulence have brought stagnation.“In a world where there is more risk and uncertainty, people become reluctant to voluntarily move jobs and find better jobs,” says Manning. At the same time, businesses have cut back on i…...
Postman接口测试工具的原理及应用详解(五)
本系列文章简介: 在当今软件开发的世界中,接口测试作为保证软件质量的重要一环,其重要性不言而喻。随着前后端分离开发模式的普及,接口测试已成为连接前后端开发的桥梁,确保前后端之间的数据交互准确无误。在这样的背景…...
208.贪心算法:买卖股票的最佳时机||(力扣)
代码解决 class Solution { public:int maxProfit(vector<int>& prices) {int result 0; // 初始化结果为0,表示初始利润为0// 从第二天开始遍历价格数组for (int i 1; i < prices.size(); i) {// 如果当天价格比前一天价格高,则将差价加…...
【论文阅读】伸缩密度比估计:Telescoping Density-Ratio Estimation
文章目录 一、文章概览(一)问题提出(二)文章工作 二、判别比估计和密度鸿沟问题三、伸缩密度比估计(一)核心思想(二)路标创建(三)桥梁构建(四&…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
