当前位置: 首页 > news >正文

【机器学习】基于层次的聚类方法:理论与实践


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • 基于层次的聚类方法:理论与实践
    • 引言
    • 1. 层次聚类基础
      • 1.1 概述
      • 1.2 距离度量
    • 2. 算法实现步骤
      • 2.1 凝聚型聚类步骤
      • 2.2 分裂型聚类步骤
    • 3. 树状聚类图(Dendrogram)
    • 4. 优缺点
      • 4.1 优点
      • 4.2 缺点
    • 5. 实践应用
      • 5.1 生物信息学
      • 5.2 社交网络分析
      • 5.3 图像分割
    • 6. 结论

基于层次的聚类方法:理论与实践

在这里插入图片描述

引言

在数据科学与机器学习领域,聚类算法是无监督学习的重要组成部分,用于探索数据的内在结构,识别数据点之间的相似性并将其分组成有意义的簇。层次聚类(Hierarchical Clustering)作为一种经典的聚类方法,因其能够提供数据点之间层次关系的直观树状图(又称树状聚类图或 dendrogram),在生物学、社会网络分析、图像分割等多个领域有着广泛的应用。本文将深入探讨层次聚类的基本概念、算法类型、实现步骤、优缺点以及实际应用案例,帮助读者全面理解这一重要算法。

1. 层次聚类基础

1.1 概述

层次聚类算法通过逐步合并或分裂数据点(或簇)来构建一个层次结构。根据合并或分裂的方向,层次聚类可分为两种主要类型:凝聚型(Agglomerative)和分裂型(Divisive)。

  • 凝聚型聚类:从每个数据点自成一簇开始,逐步合并最相似的簇,直至所有数据点合并成一个簇或达到预设的终止条件。
  • 分裂型聚类:初始将所有数据作为一个簇,然后逐渐分裂成越来越小的簇,直到每个数据点成为一个独立的簇或满足终止条件。
    在这里插入图片描述

1.2 距离度量

层次聚类算法的关键在于如何定义数据点或簇之间的相似度或距离。常见的距离度量包括欧氏距离、曼哈顿距离、余弦相似度和Jaccard相似度等。

2. 算法实现步骤

2.1 凝聚型聚类步骤

  1. 初始化:每个数据点视为一个簇。
  2. 计算距离:根据所选距离度量,计算每对簇间的距离。
  3. 合并簇:选择距离最近的两个簇合并为一个新的簇。
  4. 更新距离:重新计算新簇与其他簇之间的距离,常用方法有单连接(最小距离)、全连接(最大距离)、平均连接(簇间所有点对距离的平均)和重心连接。
  5. 重复步骤3-4,直到满足终止条件(如指定的簇数量、距离阈值或达到最大迭代次数)。

2.2 分裂型聚类步骤

分裂型聚类的步骤与凝聚型相反,从一个包含所有数据点的大簇开始,根据某种准则(如簇内差异最大化)逐步分裂簇,直至达到预定的簇数量或分裂标准。

3. 树状聚类图(Dendrogram)

在这里插入图片描述

树状聚类图是层次聚类结果的图形化展示,横轴表示数据点或簇,纵轴表示合并或分裂时的距离。通过设定一个截断阈值,可以从dendrogram中得到一个特定数量的簇。

4. 优缺点

4.1 优点

  • 直观性:树状图提供了数据点间关系的直观展示。
  • 灵活性:用户可以根据需要选择不同的距离度量和簇合并规则。
  • 可解释性:层次结构易于理解和解释,便于发现数据的层次结构。

4.2 缺点

  • 计算复杂度:随着数据点数量的增加,计算距离矩阵的时间复杂度和空间复杂度呈平方级增长。
  • 选择难题:确定最佳的簇数目较为困难,通常依赖于主观判断或额外的评估标准。
  • 敏感性:对初始距离度量和连接准则敏感,不同的选择可能导致显著不同的聚类结果。

5. 实践应用

5.1 生物信息学

在基因表达数据分析中,层次聚类用于识别具有相似表达模式的基因或样本,帮助理解基因功能和疾病机制。

5.2 社交网络分析

通过对社交网络中的用户或社区进行层次聚类,可以发现网络中的子群结构,理解用户之间的互动模式和影响力传播路径。
在这里插入图片描述

5.3 图像分割

在计算机视觉领域,层次聚类可用于图像分割,通过将像素点根据颜色、纹理等特征聚类,实现对图像内容的有效划分。

6. 结论

层次聚类作为一种强大的无监督学习工具,为复杂数据的组织和理解提供了有效的途径。尽管存在计算复杂度高和簇数选择困难等局限性,但通过合理的参数选择和优化策略,层次聚类在众多领域展现出其独特的价值和应用潜力。随着算法理论的进一步发展和计算资源的不断进步,层次聚类方法有望在未来的数据分析和机器学习任务中扮演更加重要的角色。

End

相关文章:

【机器学习】基于层次的聚类方法:理论与实践

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 基于层次的聚类方法:理论与实践引言1. 层次聚类基础1.1 概述1.2 距离…...

C# 验证PDF数字签名的有效性

数字签名作为PDF文档中的重要安全机制,不仅能够验证文件的来源,还能确保文件内容在传输过程中未被篡改。然而,如何正确验证PDF文件的数字签名,是确保文件完整性和可信度的关键。本文将详细介绍如何使用免费.NET控件通过C#验证PDF签…...

2小时动手学习扩散模型(pytorch版)【入门版】【代码讲解】

2小时动手学习扩散模型(pytorch版) 课程地址 2小时动手学习扩散模型(pytorch版) 课程目标 给零基础同学快速了解扩散模型的核心模块,有个整体框架的理解。知道扩散模型的改进和设计的核心模块。 课程特色&#xf…...

Centos7网络配置(设置固定ip)

文章目录 1进入虚拟机设置选中【网络适配器】选择【NAT模式】2 进入windows【控制面板\网络和 Internet\网络和共享中心\更改适配器设置】设置网络状态。3 设置VM的【虚拟网络编辑器】4 设置系统网卡5 设置虚拟机固定IP 刚安装完系统,有的人尤其没有勾选自动网络配置…...

英伟达被“压制”的25年

十九世纪中叶的美国西部,掀起了一场轰轰烈烈的淘金热,但最终赚到钱的,并不是拿命去赌的淘金者。一个名叫萨姆布瑞南的商人,通过向淘金者出售铲子,成了加州历史上第一位百万富翁。 每一次风口出现时,总有企…...

windows安装Gitblit还是Bonobo Git Server

Gitblit 和 Bonobo Git Server 都是用于托管Git仓库的工具,但它们是基于不同平台的不同软件。 Gitblit 是一个纯 Java 写的服务器,支持托管 Git,Mercurial 和 SVN 仓库。它需要 Java 运行环境,适合在 Windows、Linux 和 Mac 平台…...

仪器校准的概念与定义,计量校准是什么?

仪器校准的定义,在之前所颁布的《国际计量学词汇 基础和通用概念及相关术语》文件中,已经有了明确说明,而该文件做了修改以后,在后续新的定义中,仪器校准具体被分为两部分,第一步是将被计量仪器和计量校准的…...

Vue3+Pinia

1.单纯调接口(安装pinia及引入如下第一张图) 1.npm install pinia2.在main.js里引入即可import { createPinia } from piniaapp.use(createPinia()) 1.stores建立你文件的ts、内容如下:1-1 import { defineStore } from pinia1-2 import { findPageJobSet } from …...

label studio数据标注平台的自动化标注使用

(作者:陈玓玏) 开源项目,欢迎star哦,https://github.com/data-infra/cube-studio 做图文音项目过程中,我们通常会需要进行数据标注。label studio是一个比较好上手的标注平台,可以直接搜索…...

高并发场景下的热点key问题探析与应对策略

目录 一、问题描述 二、发现机制 三、解决策略分析 (一)解决策略一:多级缓存策略 客户端本地缓存 代理节点本地缓存 (二)解决策略二:多副本策略 (三)解决策略三:热点…...

学习一下C++中的枚举的定义

目录 普通枚举 强类型枚举 普通枚举 枚举类型在C中是通过关键字enum来定义的。下面是一个简单的例子: enum Color { RED, GREEN, BLUE }; 在这个例子中,我们定义了一个名为Color的枚举类型,它包含了三个枚举值:RED、GRE…...

开发一套java语言的智能导诊需要什么技术?java+ springboot+ mysql+ IDEA互联网智能3D导诊系统源码

开发一套java语言的智能导诊需要什么技术?java springboot mysql IDEA互联网智能3D导诊系统源码 医院导诊系统是一种基于互联网和3D人体的智能化服务系统,旨在为患者提供精准、便捷的医院就诊咨询服务。该系统整合了医院的各种医疗服务资;智慧…...

C++| STL之string

前言:最近在做LeetCode算法题,C字符串通常都是string作为输入,所以补充一下STL里面string。在介绍的具体使用的时候,会补充char字符串相关的进行对比。 string 创建大小和容量遍历字符串比较插入字符拼接字符串分配内存查找截取分…...

[数据集][目标检测]游泳者溺水检测数据集VOC+YOLO格式4599张2类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4599 标注数量(xml文件个数):4599 标注数量(txt文件个数):4599 标注…...

JAVA实现麦克风说话同声传译

一、能力与场景说明 同声传译,又称同步口译或同声翻译,是一种专业的口译形式,指的是在讲话者发言时,口译员几乎同时将讲话内容翻译成目标语言。这种翻译方式通常用于国际会议、高级别政治或商业会谈、研讨会和其他需要即时多语言…...

LabVIEW与PLC通讯方式及比较

LabVIEW与PLC之间的通讯方式多样,包括使用MODBUS协议、OPC(OLE for Process Control)、Ethernet/IP以及串口通讯等。这些通讯方式各有特点,选择合适的通讯方式可以提高系统的效率和稳定性。以下将详细介绍每种通讯方式的特点、优点…...

2024/6/30 英语每日一段

Years of economic and political turbulence have brought stagnation.“In a world where there is more risk and uncertainty, people become reluctant to voluntarily move jobs and find better jobs,” says Manning. At the same time, businesses have cut back on i…...

Postman接口测试工具的原理及应用详解(五)

本系列文章简介: 在当今软件开发的世界中,接口测试作为保证软件质量的重要一环,其重要性不言而喻。随着前后端分离开发模式的普及,接口测试已成为连接前后端开发的桥梁,确保前后端之间的数据交互准确无误。在这样的背景…...

208.贪心算法:买卖股票的最佳时机||(力扣)

代码解决 class Solution { public:int maxProfit(vector<int>& prices) {int result 0; // 初始化结果为0&#xff0c;表示初始利润为0// 从第二天开始遍历价格数组for (int i 1; i < prices.size(); i) {// 如果当天价格比前一天价格高&#xff0c;则将差价加…...

【论文阅读】伸缩密度比估计:Telescoping Density-Ratio Estimation

文章目录 一、文章概览&#xff08;一&#xff09;问题提出&#xff08;二&#xff09;文章工作 二、判别比估计和密度鸿沟问题三、伸缩密度比估计&#xff08;一&#xff09;核心思想&#xff08;二&#xff09;路标创建&#xff08;三&#xff09;桥梁构建&#xff08;四&…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后&#xff0c;命令 changeCase.commands 可预览转换效果 EmmyLua…...