雪花算法(SnowFlake)
简介
现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性。
对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的 id 值。那么如何保证水平分表后的多张表中的 id 是全局唯一性的呢?
如果还是借助数据库主键自增的形式,那么可以让不同表初始化一个不同的初始值,然后按指定的步长进行自增。例如有3张拆分表,初始主键值为1,2,3,自增步长为3。
当然也有人使用 UUID 来作为主键,但是 UUID 生成的是一个无序的字符串,对于 MySQL 推荐使用增长的数值类型值作为主键来说不适合。
也可以使用 Redis 的自增原子性来生成唯一 id,但是这种方式业内比较少用。
当然还有其他解决方案,不同互联网公司也有自己内部的实现方案。雪花算法是其中一个用于解决分布式 id 的高效方案,也是许多互联网公司在推荐使用的。
SnowFlake 雪花算法
SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。
最高 1 位固定值 0,因为生成的 id 是正整数,如果是 1 就是负数了。
接下来 41 位存储毫秒级时间戳,2^41/(1000*60*60*24*365)=69,大概可以使用 69 年。
再接下 10 位存储机器码,包括 5 位 datacenterId 和 5 位 workerId。最多可以部署 2^10=1024 台机器。
最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。
可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。
对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。
算法实现
package com.ruoyi.common.utils;import java.util.Date;/*** @ClassName: SnowFlakeUtil* 雪花算法*/
public class SnowFlakeUtil {private static SnowFlakeUtil snowFlakeUtil;static {snowFlakeUtil = new SnowFlakeUtil();}// 初始时间戳(纪年),可用雪花算法服务上线时间戳的值// 1650789964886:2022-04-24 16:45:59private static final long INIT_EPOCH = 1650789964886L;// 时间位取&private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;// 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断private long lastTimeMillis = -1L;// dataCenterId占用的位数private static final long DATA_CENTER_ID_BITS = 5L;// dataCenterId占用5个比特位,最大值31// 0000000000000000000000000000000000000000000000000000000000011111private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);// dataCenterIdprivate long dataCenterId;// workId占用的位数private static final long WORKER_ID_BITS = 5L;// workId占用5个比特位,最大值31// 0000000000000000000000000000000000000000000000000000000000011111private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);// workIdprivate long workerId;// 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095private static final long SEQUENCE_BITS = 12L;// 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095// 0000000000000000000000000000000000000000000000000000111111111111private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);// 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095private long sequence;// workId位需要左移的位数 12private static final long WORK_ID_SHIFT = SEQUENCE_BITS;// dataCenterId位需要左移的位数 12+5private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;// 时间戳需要左移的位数 12+5+5private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;/*** 无参构造*/public SnowFlakeUtil() {//实际分布式系统中,一种参考方案是dataCenterId为mac地址,workerId为pid相关this(1, 1);}/*** 有参构造* @param dataCenterId* @param workerId*/public SnowFlakeUtil(long dataCenterId, long workerId) {// 检查dataCenterId的合法值if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {throw new IllegalArgumentException(String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));}// 检查workId的合法值if (workerId < 0 || workerId > MAX_WORKER_ID) {throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));}this.workerId = workerId;this.dataCenterId = dataCenterId;}/*** 获取唯一ID* @return*/public static Long getSnowFlakeId() {return snowFlakeUtil.nextId();}/*** 通过雪花算法生成下一个id,注意这里使用synchronized同步* @return 唯一id*/public synchronized long nextId() {long currentTimeMillis = System.currentTimeMillis();System.out.println(currentTimeMillis);// 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题if (currentTimeMillis < lastTimeMillis) {throw new RuntimeException(String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,lastTimeMillis));}if (currentTimeMillis == lastTimeMillis) {// 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095// 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095// 那么就使用新的时间戳sequence = (sequence + 1) & SEQUENCE_MASK;if (sequence == 0) {currentTimeMillis = getNextMillis(lastTimeMillis);}} else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095sequence = 0;}// 记录最后一次使用的毫秒时间戳lastTimeMillis = currentTimeMillis;// 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行// <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍// |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1// 优先级:<< > |return// 时间戳部分((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)// 数据中心部分| (dataCenterId << DATA_CENTER_ID_SHIFT)// 机器表示部分| (workerId << WORK_ID_SHIFT)// 序列号部分| sequence;}/*** 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒* @param lastTimeMillis 指定毫秒时间戳* @return 时间戳*/private long getNextMillis(long lastTimeMillis) {long currentTimeMillis = System.currentTimeMillis();while (currentTimeMillis <= lastTimeMillis) {currentTimeMillis = System.currentTimeMillis();}return currentTimeMillis;}/*** 获取随机字符串,length=13* @return*/public static String getRandomStr() {return Long.toString(getSnowFlakeId(), Character.MAX_RADIX);}/*** 从ID中获取时间* @param id 由此类生成的ID* @return*/public static Date getTimeBySnowFlakeId(long id) {return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);}public static void main(String[] args) {SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();long id = snowFlakeUtil.nextId();System.out.println("id:" + id);Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);System.out.println(date);long time = date.getTime();System.out.println("time:" + time);System.out.println(getRandomStr());}}
算法优缺点
雪花算法有以下几个优点:
高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
不依赖第三方库或者中间件。
算法简单,在内存中进行,效率高。
雪花算法有如下缺点:
依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。
注意事项
其实雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到 69 年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024 台,那么可将减少的位数补充给机器码用。
注意,雪花算法中 41 位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。
对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。
相关文章:

雪花算法(SnowFlake)
简介现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性。对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表…...

Linux防火墙
一、Linux防火墙Linux的防火墙体系主要在网络层,针对TCP/IP数据包实施过滤和限制,属于典型的包过滤防火墙(或称为网络层防火墙)。Linux系统的防火墙体系基于内核编码实现,具有非常稳定的性能和极高的效率,因…...
网络安全系列-四十七: IP协议号大全
IP协议号列表 这是用在IPv4头部和IPv6头部的下一首部域的IP协议号列表。 十进制十六进制关键字协议引用00x00HOPOPTIPv6逐跳选项RFC 246010x01ICMP互联网控制消息协议(ICMP)RFC 79220x02IGMP...

HTTP协议格式以及Fiddler用法
目录 今日良言:焦虑和恐惧改变不了明天,唯一能做的就是把握今天 一、HTTP协议的基本格式 二、Fiddler的用法 1.Fidder的下载 2.Fidder的使用 今日良言:焦虑和恐惧改变不了明天,唯一能做的就是把握今天 一、HTTP协议的基本格式 先来介绍一下http协议: http 协议(全称为 &q…...

自动写代码?别闹了!
大家好,我是良许。 这几天,GitHub 上有个很火的插件在抖音刷屏了——Copilot。 这个神器有啥用呢?简单来讲,它就是一款由人工智能打造的编程辅助工具。 我们来看看它有啥用。 首先就是代码补全功能,你只要给出函数…...

项目心得--网约车
一、RESTFULPost:新增Put:全量修改Patch:修改某个值Delete: 删除Get:查询删除接口也可以用POST请求url注意:url中不要带有敏感词(用户id等)url中的名词用复数形式url设计:api.xxx.co…...

【二叉树广度优先遍历和深度优先遍历】
文章目录一、二叉树的深度优先遍历0.建立一棵树1. 前序遍历2.中序遍历3. 后序遍历二、二叉树的广度优先遍历层序遍历三、有关二叉树练习一、二叉树的深度优先遍历 学习二叉树结构,最简单的方式就是遍历。 所谓二叉树遍历(Traversal)是按照某种特定的规则ÿ…...

Spring Cloud微服务架构必备技术
单体架构 单体架构,也叫单体应用架构,是一个传统的软件架构模式。单体架构是指将应用程序的所有组件部署到一个单一的应用程序中,并统一进行部署、维护和扩展。在单体架构中,应用程序的所有功能都在同一个进程中运行,…...

TCP三次握手与四次挥手(一次明白)
TCP基本信息 默认端口号:80 LINUX中TIME_WAIT的默认时间是30s TCP三次握手 三次握手过程:每行代表发起握手到另一方刚刚收到数据包时的状态 客户端服务端客户端状态服务端状态握手前CLOSELISTEN客户端发送带有SYN标志的数据包到服务端一次握手SYN_SENDLISTEN二次握手服务端发送…...

pyside6@Mouse events实例@QApplication重叠导致的报错@keyboardInterrupt
文章目录报错内容鼠标事件演示报错内容 在pyside图形界面应用程序开发过程中,通常只允许运行一个实例 假设您重复执行程序A,那么可能会导致一些意向不到的错误并且,从python反馈的信息不容易判断错误的真正来源 鼠标事件演示 下面是一段演示pyside6的鼠标事件mouseEvent对象…...

订单30分钟未支付自动取消怎么实现?
目录了解需求方案 1:数据库轮询方案 2:JDK 的延迟队列方案 3:时间轮算法方案 4:redis 缓存方案 5:使用消息队列了解需求在开发中,往往会遇到一些关于延时任务的需求。例如生成订单 30 分钟未支付࿰…...

< 开源项目框架:推荐几个开箱即用的开源管理系统 - 让开发不再复杂 >
文章目录👉 SCUI Admin 中后台前端解决方案👉 Vue .NetCore 前后端分离的快速发开框架👉 next-admin 适配移动端、pc的后台模板👉 django-vue-admin-pro 快速开发平台👉 Admin.NET 通用管理平台👉 RuoYi 若…...

内网渗透-基础环境
解决依赖,scope安装 打开要给cmd powershell 打开远程 Set-ExecutionPolicy RemoteSigned -scope CurrentUser; 我试了好多装这东西还是得科学上网,不然不好用 iwr -useb get.scoop.sh | iex 查看下载过的软件 安装sudo 安装git 这里一定要配置bu…...

Go语言学习的第一天(对于Go学习的认识和工具选择及环境搭建)
首先学习一门新的语言,我们要知道这门语言可以帮助我们做些什么?为什么我们要学习这门语言?就小wei而言学习这门语言是为了区块链,因为自身是php出身,因为php的一些特性只能通过一些算法模拟的做一个虚拟链,…...
C和C++到底有什么关系
C++ 读作”C加加“,是”C Plus Plus“的简称。顾名思义,C++是在C的基础上增加新特性,玩出了新花样,所以叫”C Plus Plus“,就像 iPhone 6S 和 iPhone 6、Win10 和 Win7 的关系。 C语言是1972年由美国贝尔实验室研制成功的,在当时算是高级语言,它的很多新特性都让汇编程序…...

14个Python处理Excel的常用操作,非常好用
自从学了Python后就逼迫用Python来处理Excel,所有操作用Python实现。目的是巩固Python,与增强数据处理能力。 这也是我写这篇文章的初衷。废话不说了,直接进入正题。 数据是网上找到的销售数据,长这样: 一、关联公式:…...
async/await 用法
1. 什么是 async/await async/await 是 ES8(ECMAScript 2017)引入的新语法,用来简化 Promise 异步操作。在 async/await 出 现之前,开发者只能通过链式 .then() 的方式处理 Promise 异步操作。示例代码如下: import …...

好意外,发现永久免费使用的云服务器
原因就不说了,说一下过程,在百度搜pythonIDE的时候,发现了一个网站 https://lightly.teamcode.com/https://lightly.teamcode.com/ 就是这个网站,看见这个免费试用,一开始觉得没什么,在尝试使用的过程中发…...

VSCode使用技巧,代码编写效率提升2倍以上!
VSCode是一款开源免费的跨平台文本编辑器,它的可扩展性和丰富的功能使得它成为了许多程序员的首选编辑器。在本文中,我将分享一些VSCode的使用技巧,帮助您更高效地使用它。 1. 插件 VSCode具有非常丰富的插件生态系统,通过安装插…...

SQL执行过程详解
1 、用户在客户端执行 SQL 语句时,客户端把这条 SQL 语句发送给服务端,服务端的进程,会处理这条客户端的SQL语句。 2 、服务端进程收集到SQL信息后,会在进程全局区PGA 中分配所需内存,存储相关的登录信息等。 3 、客…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...