[论文阅读笔记33] Matching Anything by Segmenting Anything (CVPR2024 highlight)
这篇文章借助SAM模型强大的泛化性,在任意域上进行任意的多目标跟踪,而无需任何额外的标注。
其核心思想就是在训练的过程中,利用strong augmentation对一张图片进行变换,然后用SAM分割出其中的对象,因此可以找到一组图像中目标的pixel的对应关系,从而实现了自监督的信号。
论文:https://arxiv.org/abs/2406.04221
代码:https://github.com/siyuanliii/masa
0. Abstract
MOT的本质是在帧间进行同一个目标的稳定关联。现有的MOT主要依赖于特定domain的数据集(比如行人MOT challenge,车辆VisDrone等),限制了cross domain的泛化性。
针对这个问题,作者提出了MASA,可以实现在任意域中跟踪任意目标。具体来说,利用SAM能够给出的丰富的目标分割,MASA的任务就是通过data augmentation学习一个instance level的对应。MASA将SAM的输出视为密集的region proposal,然后学习在巨大的图像库中,来匹配这些proposal。进一步地,设计了一个adapter来进行跟踪,实现了zero-shot跟踪的能力。
1. Introduction
前面的背景叙述先忽略,我们先看整体的方法。
这个工作的主要目标就是和现有的检测、分割模型结合起来,能够实现任意区域、目标的匹配与跟踪。但是做这种“任意”的事情,标签成本肯定是逃不过去的坎。
为了解决这个问题,作者对同一张图像应用不同的几何变换。在几何变换前后,像素的对应关系我们是已知的。再加上SAM的分割能力,就可以将这些像素自动分组成一个instance(object),这样就实现了像素级到实例级的对应,可以作为一个自监督信号。
除了上面这个self-training pipeline,作者构建了一个adapter,实现tracking的功能。
此外,作者提出了一个多任务训练的pipeline,其对SAM进行知识蒸馏。这种方法可以学习 SAM 的目标的位置、形状和外观先验,并在对比相似性学习期间模拟真实的检测。
整体的框图如下:
2. Methodology
2.1 训练
其实方法部分比较直接。首先前面讲,需要一个对比学习的范式来学习SAM在不同augmentation下分割的object的相似度。作者直接采用了朴素的对比学习损失:
L C = − ∑ q ∈ Q log e sim ( q , q + ) τ e sim ( q , q + ) τ + ∑ q − ∈ Q − e sim ( q , q − ) τ \mathcal{L}_{\mathcal{C}}=-\sum_{q \in Q} \log \frac{e^{\frac{\operatorname{sim}\left(q, q^{+}\right)}{\tau}}}{e^{\frac{\operatorname{sim}\left(q, q^{+}\right)}{\tau}}+\sum_{q^{-} \in Q^{-}} e^{\frac{\operatorname{sim}\left(q, q^{-}\right)}{\tau}}} LC=−q∈Q∑logeτsim(q,q+)+∑q−∈Q−eτsim(q,q−)eτsim(q,q+)
那么问题就是, q q q, 也就是目标特征,怎么来呢?
这就是文章的第二个贡献,adapter。
对于用较大的foundation model进行特定task微调的,往往需要一个adapter来进行适应。 这是因为直接微调foundation model肯定成本很高,并且可能会过拟合而丢失它原本具有的泛化性。
具体来说,作者提出的adapter具有特征金字塔结构,这是为了适应不同尺度的目标。对于Detic和Grounding DINO这种检测大模型来说,作者直接用了FPN。对SAM来说,作者用转置卷积和最大池化来上采样和下采样backbone中的特征图。
为了适应目标的不同形变,作者采用了可变形卷积:
F ( p ) = 1 L ∑ j = 1 L ∑ k = 1 K w k ⋅ F j ( p + p k + Δ p k j ) ⋅ Δ m k j F(p)=\frac{1}{L} \sum_{j=1}^L \sum_{k=1}^K w_k \cdot F^j\left(p+p_k+\Delta p_k^j\right) \cdot \Delta m_k^j F(p)=L1j=1∑Lk=1∑Kwk⋅Fj(p+pk+Δpkj)⋅Δmkj
在获取adapter各种融合之后的特征图后,采用ROI Align以及额外的4个轻量级卷积层(作者称为track head)来获取目标的实例级特征。(也就是对比学习损失中的 q q q)
此外,为了更好地让adapter捕捉instance level的特征,作者还设定了一个auxiliary task,也就是,detection head。detection head直接采用了RCNN的检测头,来根据当前的feature map检测图中的目标(作者正文没说,应该是以SAM的结果作为监督信号,稍后看代码),这样的话,就实现了一个知识蒸馏的效果。也就是从SAM的分割结果中,蒸馏出目标的形状、位置信息。
2.2 推理
在推理阶段,采用了QDTrack(Quasi-Dense Similarity Learning for Multiple Object Tracking
)的匹配策略:
- bi-softmax计算相似度:
s 1 ( τ , r ) = 1 2 [ exp ( q r ⋅ q τ ) ∑ r ′ ∈ P exp ( q r ′ ⋅ q τ ) + exp ( q r ⋅ q τ ) ∑ τ ′ ∈ T exp ( q r ⋅ q τ ′ ) ] s 2 ( τ , r ) = q r ⋅ q τ ∥ q r ∥ ∥ q τ ∥ s ( τ , r ) = 1 2 ( s 1 ( τ , r ) + s 2 ( τ , r ) ) \begin{gathered}s_1(\tau, r)=\frac{1}{2}\left[\frac{\exp \left(\mathbf{q}_r \cdot \mathbf{q}_\tau\right)}{\sum_{r^{\prime} \in P} \exp \left(\mathbf{q}_{r^{\prime}} \cdot \mathbf{q}_\tau\right)}+\frac{\exp \left(\mathbf{q}_r \cdot \mathbf{q}_\tau\right)}{\sum_{\tau^{\prime} \in \mathcal{T}} \exp \left(\mathbf{q}_r \cdot \mathbf{q}_{\tau^{\prime}}\right)}\right] \\ s_2(\tau, r)=\frac{\mathbf{q}_r \cdot \mathbf{q}_\tau}{\left\|\mathbf{q}_r\right\|\left\|\mathbf{q}_\tau\right\|} \\ s(\tau, r)=\frac{1}{2}\left(s_1(\tau, r)+s_2(\tau, r)\right)\end{gathered} s1(τ,r)=21[∑r′∈Pexp(qr′⋅qτ)exp(qr⋅qτ)+∑τ′∈Texp(qr⋅qτ′)exp(qr⋅qτ)]s2(τ,r)=∥qr∥∥qτ∥qr⋅qτs(τ,r)=21(s1(τ,r)+s2(τ,r))
- 贪心策略
在Detect 和 Track两种模式下,流程如下图:
相关文章:

[论文阅读笔记33] Matching Anything by Segmenting Anything (CVPR2024 highlight)
这篇文章借助SAM模型强大的泛化性,在任意域上进行任意的多目标跟踪,而无需任何额外的标注。 其核心思想就是在训练的过程中,利用strong augmentation对一张图片进行变换,然后用SAM分割出其中的对象,因此可以找到一组图…...

阿里Nacos下载、安装(保姆篇)
文章目录 Nacos下载版本选择Nacos安装Windows常见问题解决 更多相关内容可查看 Nacos下载 Nacos官方下载地址:https://github.com/alibaba/nacos/releases 码云拉取(如果国外较慢或者拉取超时可以试一下国内地址) //国外 git clone https:…...
四、golang基础之defer
文章目录 一、定义二、作用三、结果四、recover错误拦截 一、定义 defer语句被用于预定对一个函数的调用。可以把这类被defer语句调用的函数称为延迟函数。 二、作用 释放占用的资源捕捉处理异常输出日志 三、结果 如果一个函数中有多个defer语句,它们会以LIFO…...
机器人----四元素
四元素 四元素的大小 [-1,1] 欧拉角转四元素...
IBM Spectrum LSF Application Center 提供单一界面来管理应用程序、用户、资源和数据
IBM Spectrum LSF Application Center 提供单一界面来管理应用程序、用户、资源和数据 亮点 ● 简化应用程序管理 ● 提高您的工作效率 ● 降低资源管理的复杂性 ● 深入了解流程 IBM Spectrum LSF Application Center 为集群用户和管理员提供了一个灵活的、以应用为中心的界…...

如何选择品牌推广公司?哪家好?收费标准及评价!
不管是什么品牌,推广对公司的成败起了很关键的作用。然而,面对市面上琳琅满目的品牌推广公司,如何选择一家既熟悉又靠谱的公司,成为许多企业主面临的难题。 作为一家手工酸奶品牌的创始人,目前全国也复制了100多家门店…...

JDeveloper 12C 官网下载教程
首先、我们要登录Oracle官网 Oracle 甲骨文中国 | 云应用和云平台 登录进去如果不是中文可以点击右上角带有国旗的图标就行更改,选择一个你能看懂的文字。 然后,点击“资源”—点击“开发人员下载” 然后,点击“开发工具” 这里有很多工具可…...
中英双语介绍美国的州:印第安纳州(Indiana)
中文版 印第安纳州简介 印第安纳州位于美国中西部地区,是一个以其农业、制造业和体育文化而著称的州。以下是对印第安纳州的详细介绍,包括其地理位置、人口、经济、教育、文化和主要城市。 地理位置 印第安纳州东临俄亥俄州,北接密歇根州…...

Flink实现准确和高效流处理的关键问题
时间相关: Watermark 水位线 水位线是插入到数据流中的一个标记,可以认为是一个特殊的数据。水位线主要的内容是一个时间戳,用来表示当前事件时间的进展。水位线是基于数据的时间戳生成的。水位线的时间戳必须单调递增,以确保任务的事件时间时钟一直向前推进,进展。水位线…...

isidentifier()方法——判断字符串是否为合法的Python标识符或变量名
自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 isidentifier()方法用于判断字符串是否是有效的Python标识符,还可以用来判断变量名是否合法。isidentifier()方法的语法格式如…...
天猫商品列表数据接口(Tmall.item_search)
天猫平台商品列表数据接口(taobao.item_search)是天猫开放平台提供的一个API接口,用于获取天猫平台上的商品列表数据。通过该接口,用户可以获取到商品的名称、价格、销量、评价等信息。下面将具体介绍这个接口的各个方面ÿ…...

React+TS前台项目实战(二十一)-- Search业务组件封装实现全局搜索
文章目录 前言一、Search组件封装1. 效果展示2. 功能分析3. 代码详细注释4. 使用方式 二、搜索结果展示组件封装1. 功能分析2. 代码详细注释 三、引用到文件,自行取用总结 前言 今天,我们来封装一个业务灵巧的组件,它集成了全局搜索和展示搜…...

SEO与AI的结合:如何用ChatGPT生成符合搜索引擎优化的内容
在当今数字时代,搜索引擎优化(SEO)已成为每个网站和内容创作者都必须掌握的一项技能。SEO的主要目标是通过优化内容,使其在搜索引擎结果页面(SERP)中排名更高,从而吸引更多的流量。然而…...
【信息系统项目管理师知识点速记】组织通用管理:知识管理
23.3 知识管理 23.3.1 知识管理基础 知识管理是通过利用各种知识和技术手段,帮助组织和个人生产、分享、应用和创新知识,以形成知识优势并在个人、组织、业务目标、经济绩效和社会效益方面产生价值的过程。它能为组织带来知识增值,创造新的价值,提升决策效能和水平,是提…...

CM-UNet: Hybrid CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation
论文:CM-UNet: Hybrid :CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation 代码:https://github.com/XiaoBuL/CM-UNet Abstrcat: 由于大规模图像尺寸和对象变化,当前基于 CNN 和 Transformer 的遥感图像语义分割方…...

DP:子序列问题
文章目录 什么是子序列子序列的特点举例说明常见问题 关于子序列问题的几个例题1.最长递增子序列2.摆动序列3.最长递增子序列的个数4.最长数对链5.最长定差子序列 总结 什么是子序列 在计算机科学和数学中,子序列(Subsequence)是指从一个序列…...
Spring Data与多数据源配置
Spring Data与多数据源配置 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Spring Data中配置和使用多个数据源。 在现代应用程序中&…...

【前端vue3】TypeScrip-类型推论和类型别名
类型推论 TypeScript里,在有些没有明确指出类型的地方,类型推论会帮助提供类型。 例如: 变量xiaoc被推断类型为string 如重新给xiaoc赋值数字会报错 let xiaoc "xiaoc"xiaoc 1111111111111如没有给变量指定类型和赋值…...

javaEE——Servlet
1.web开发概述 所谓web开发,指的是从网页中向后端程序发送请求,与后端程序进行交互 2.java后端开发环境搭建 web后端(javaEE)程序需要运行在服务器中的,这样前端才可以访问得到 3.服务器是什么? ①服务器就是一款软件,可以向其发送请求&#…...

Kotlin扩展函数(also apply run let)和with函数
also apply run let with的使用例子 private fun testOperator() {/*** also*/val person Person("ZhangSan", 18)person.also {// 通常仅仅打印使用, 也可以通过it修改it.name "ZhangSan1"println("also inner name: " it.name)}println(&qu…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...