当前位置: 首页 > news >正文

【C++进阶学习】第五弹——二叉搜索树——二叉树进阶及set和map的铺垫

二叉树1:深入理解数据结构第一弹——二叉树(1)——堆-CSDN博客

二叉树2:深入理解数据结构第三弹——二叉树(3)——二叉树的基本结构与操作-CSDN博客

二叉树3:深入理解数据结构第三弹——二叉树(3)——二叉树的基本结构与操作-CSDN博客

前言:


在之前我们用C语言实现数据结构时,已经对二叉树进行了系统的学习,但还是有一些内容并没有涉及到,比如今天要讲的二叉搜索树,因为二叉搜索树在C++中有现成的模板库——set和map,并且实现起来较为麻烦,所以我们放到这里来讲,对前面二叉树部分有所遗忘的同学可以在我的主页搜一下之前的文章看一下

目录

一、二叉搜索树的概念

二、二叉搜索树的基本操作

1. 插入节点

2. 查找节点

3. 删除节点

三、二叉搜索树的实现

四、二叉搜索树的应用

五、总结


一、二叉搜索树的概念

二叉搜索树又称二叉排序树,它是一种具有特殊性质的二叉树,它具有以下特点:

1. 有序性:对于树中的每个节点,其左子树中的所有节点的值都小于该节点的值,而其右子树中的所有节点的值都大于该节点的值。

2. 唯一性:树中的每个节点的值都是唯一的,不存在重复的值。

3. 递归性:它的子树也都是二叉树

上面这三种性质,最不好理解的应该是有序性,下面我们通过两个例子来展现这三种性质:

二、二叉搜索树的基本操作

1. 插入节点

插入节点的过程如下:

  • 从根节点开始,比较要插入的值与当前节点的值。
  • 如果要插入的值小于当前节点的值,则移动到左子节点;如果要插入的值大于当前节点的值,则移动到右子节点。
  • 重复上述过程,直到找到一个空位置,然后在该位置插入新节点。
2. 查找节点

查找节点的过程如下:

  • 从根节点开始,比较要查找的值与当前节点的值。
  • 如果要查找的值等于当前节点的值,则返回该节点。
  • 如果要查找的值小于当前节点的值,则移动到左子节点;如果要查找的值大于当前节点的值,则移动到右子节点。
  • 重复上述过程,直到找到目标节点或遍历到空节点。
3. 删除节点

删除节点的过程相对复杂,需要考虑以下几种情况:

  • 删除叶子节点:直接删除该节点。
  • 删除只有一个子节点的节点:将其子节点替换到该节点的位置。
  • 删除有两个子节点的节点:找到该节点右子树中的最小节点(或左子树中的最大节点),将其值替换到该节点的位置,然后删除该最小节点。

三、二叉搜索树的实现

template<class T>
struct BSTNode
{BSTNode(const T& data = T()): _pLeft(nullptr) , _pRight(nullptr), _data(data){}BSTNode<T>* _pLeft;BSTNode<T>* _pRight;T _data;
};
template<class T>
class BSTree
{typedef BSTNode<T> Node;typedef Node* PNode;
public:BSTree(): _pRoot(nullptr){}// 自己实现,与二叉树的销毁类似~BSTree();// 根据二叉搜索树的性质查找:找到值为data的节点在二叉搜索树中的位置PNode Find(const T& data);bool Insert(const T& data){// 如果树为空,直接插入if (nullptr == _pRoot){_pRoot = new Node(data);return true;}// 按照二叉搜索树的性质查找data在树中的插入位置PNode pCur = _pRoot;// 记录pCur的双亲,因为新元素最终插入在pCur双亲左右孩子的位置PNode pParent = nullptr;while (pCur){pParent = pCur;if (data < pCur->_data)
比特就业课pCur = pCur->_pLeft;else if (data > pCur->_data)pCur = pCur->_pRight;  // 元素已经在树中存在elsereturn false;}// 插入元素pCur = new Node(data);if (data < pParent->_data)pParent->_pLeft = pCur;elsepParent->_pRight = pCur;return true;}bool Erase(const T& data){// 如果树为空,删除失败if (nullptr == _pRoot)return false;// 查找在data在树中的位置PNode pCur = _pRoot;PNode pParent = nullptr;while (pCur){if (data == pCur->_data)break;else if (data < pCur->_data){pParent = pCur;pCur = pCur->_pLeft;}else{pParent = pCur;pCur = pCur->_pRight;}}// data不在二叉搜索树中,无法删除if (nullptr == pCur)return false;// 分以下情况进行删除,同学们自己画图分析完成if (nullptr == pCur->_pRight){// 当前节点只有左孩子或者左孩子为空---可直接删除}else if (nullptr == pCur->_pRight){// 当前节点只有右孩子---可直接删除}else{
// 当前节点左右孩子都存在,直接删除不好删除,可以在其子树中找一个替代结点,
比如:// 找其左子树中的最大节点,即左子树中最右侧的节点,或者在其右子树中最小的节
点,即右子树中最小的节点// 替代节点找到后,将替代节点中的值交给待删除节点,转换成删除替代节点}return true;}
// 自己实现void InOrder();
private:PNode _pRoot;
};

四、二叉搜索树的应用

在我们目前的学习中,二叉搜索树最重要的用途就是key--val模型,KV模型就是每一个key值都对应一个val值,这样就形成一个<key,val>键值对,这样的应用在生活中是非常常见的

比如:在菜市场中不同的蔬菜对应着不同的价格;新华词典中,不同的汉字对应着不同的拼音,这些都可以用KV模型来解决

下面是KV模型的实现(没有主函数):

namespace kv
{template<class K,class V>struct BSTreeNode{BSTreeNode<K,V>* _left;BSTreeNode<K,V>* _right;K _key;V _value;BSTreeNode(const K& key,const V& value):_left(nullptr), _right(nullptr), _key(key), _value(value){}};template<class K,class V>class BSTree{typedef BSTreeNode<K,V> Node;public://遍历(中序)void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_key << ":" << root->_value << endl;_InOrder(root->_right);}void InOrder(){_InOrder(_root);cout << endl;}///bool Insert(const K& key,const V& value){if (_root == nullptr){_root = new Node(key,value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){parent = cur;if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return false;}}cur = new Node(key,value);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return cur;}}return nullptr;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{// 准备删除  20:15继续if (cur->_left == nullptr){//左为空if (cur == _root){_root = cur->_right;}else{if (cur == parent->_left){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->_right == nullptr){//右为空if (cur == _root){_root = cur->_left;}else{if (cur == parent->_left){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else{//左右都不为空// 右树的最小节点(最左节点)Node* parent = cur;Node* subLeft = cur->_right;while (subLeft->_left){parent = subLeft;subLeft = subLeft->_left;}swap(cur->_key, subLeft->_key);if (subLeft == parent->_left)parent->_left = subLeft->_right;elseparent->_right = subLeft->_right;delete subLeft;}return true;}}return false;}BSTree() = default;~BSTree(){Destroy(_root);}//递归版本bool InsertR(const K& key){return _InsertR(_root, key);}bool FindR(const K& key){return _FindR(_root, key);}bool EraseR(const K& key){return _EraseR(_root, key);}BSTree(const BSTree<K,V>& t){_root = Copy(t._root);}BSTree<K,V>& operator=(BSTree<K,V> t){swap(_root, t._root);return *this;}private:Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newroot = new Node(root->_key);newroot->_left = Copy(root->_left);newroot->_right = Copy(root->_right);return newroot;}void Destroy(Node*& root){if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;root = nullptr;}bool _EraseR(Node*& root, const K& key){if (root == nullptr){return false;}if (root->_key < key){return _EraseR(root->_right, key);}else if (root->_key > key){return _EraseR(root->_left, key);}else{if (root->_left == nullptr){root = root->_right;return true;}else if (root->_right == nullptr){root = root->_left;return true;}else{Node* subLeft = root->_right;while (subLeft->_left){subLeft = subLeft->_left;}swap(root->_key, subLeft->_key);return _EraseR(root->_right, key);}}}bool _FindR(Node* root, const K& key){if (root == nullptr){return false;}if (root->_key < key){return root->_right;}else if (root->_key > key){return root->_left;}else{return true;}}bool _InsertR(Node*& root, const K& key){if (root == nullptr){root = new Node(key);return true;}if (root->_key < key){return _InsertR(root->_right, key);}else if (root->_key > key){return _InsertR(root->_left, key);}else{return false;}}Node* _root = nullptr;};
}

五、总结

以上就是二叉搜索树的主要内容,在代码实现上其实与之前讲的二叉树差别并不是很大,关键在于思路的梳理,这章就先到这了

感谢各位大佬观看,创作不易,还请各位大佬点赞支持!!!

相关文章:

【C++进阶学习】第五弹——二叉搜索树——二叉树进阶及set和map的铺垫

二叉树1&#xff1a;深入理解数据结构第一弹——二叉树&#xff08;1&#xff09;——堆-CSDN博客 二叉树2&#xff1a;深入理解数据结构第三弹——二叉树&#xff08;3&#xff09;——二叉树的基本结构与操作-CSDN博客 二叉树3&#xff1a;深入理解数据结构第三弹——二叉树…...

【RabbitMQ实战】Springboot 整合RabbitMQ组件,多种编码示例,带你实践 看完这一篇就够了

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、对RabbitMQ管理界面深入了解1、在这个界面里面我们可以做些什么&#xff1f; 二、编码练习&#xff08;1&#xff09;使用direct exchange(直连型交换机)&a…...

【你也能从零基础学会网站开发】理解DBMS数据库管理系统架构,从用户到数据到底经历了什么

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;程序猿、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 其实前面我们也…...

Vue.js 中的API接口封装实战与详解

在开发Web应用的过程中&#xff0c;我们常常需要和服务器进行数据交互&#xff0c;这就涉及到了API接口的调用。在Vue.js项目中&#xff0c;为了提高代码复用性、可维护性和降低错误率&#xff0c;我们将API接口进行合理的封装显得尤为重要。本文将详细介绍如何在Vue.js项目中实…...

职场内卷、不稳定、没前景……怎么破?

经济下行期&#xff0c;大家普遍反映混职场艰难。 再深究下&#xff0c;发现造成职场艰难的原因主要有三个&#xff1a; 1.内卷&#xff1a;狼多肉少 2.不稳定&#xff1a;裁员总是不期而遇 3.没前景&#xff1a;明知过几年会被优化&#xff0c;但无法改变&#xff0c;死气沉沉…...

LeetCode 算法:将有序数组转换为二叉搜索树 c++

原题链接&#x1f517;&#xff1a;将有序数组转换为二叉搜索树 难度&#xff1a;简单⭐️ 题目 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 平衡 二叉搜索树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9]…...

智慧公厕系统改变了人们对服务区公厕的看法

在过去&#xff0c;服务区公厕常常给人留下脏乱差的印象&#xff0c;成为人们在长途旅行途中不愿停留的地方。然而&#xff0c;随着智慧科技的不断发展和应用&#xff0c;智慧公厕系统的出现改变了人们对服务区公厕的看法&#xff0c;为公共卫生设施的提升注入了新的活力。 一、…...

终极指南:RNNS、Transformers 和 Diffusion 模型

一、说明 作为广泛使用这些工具和模型的人&#xff0c;我的目标是解开 RNN、Transformer 和 Diffusion 模型的复杂性和细微差别&#xff0c;为您提供详细的比较&#xff0c;为您的特定需求提供正确的选择。 无论您是在构建语言翻译系统、生成高保真图像&#xff0c;还是处理时间…...

WPF UI 3D 基本概念 点线三角面 相机对象 材质对象与贴图 3D地球 光源 变形处理 动作交互 辅助交互插件 系列三

WPF UI交互专题 平面图形 Path Drawing 绘图 渐变 Brush 矩阵 Transform 变形 阴影效果 模糊效果 自定义灰度去色效果 系列二-CSDN博客 1软件中的3D基本概念 WPF 中 3D 功能的设计初衷并非提供功能齐全的游戏开发平台。 WPF 中的 3D 图形内容封装在 Viewport3D 元素中&#x…...

分子AI预测赛Task2笔记

下面所述比较官方的内容都来自官方文档 ‍‌⁠‌‍​​​‌​​⁠​​​​​&#xfeff;​​​&#xfeff;‍‬​​‍⁠‍‍​​‬​&#xfeff;‌​​​‌‍‬​​​​​​‍‌Task2&#xff1a;赛题深入解析 - 飞书云文档 (feishu.cn) 赛题背景 强调了人工智能在科研领域&…...

剖析DeFi交易产品之UniswapV4:创建池子

本文首发于公众号&#xff1a;Keegan小钢 创建池子的底层函数是 PoolManager 合约的 initialize 函数&#xff0c;其代码实现并不复杂&#xff0c;如下所示&#xff1a; function initialize(PoolKey memory key, uint160 sqrtPriceX96, bytes calldata hookData)externalover…...

速盾:cdn内容分发服务有哪些优势?

CDN&#xff08;Content Delivery Network&#xff09;是指内容分发网络&#xff0c;是一种将网络内容分发到全球各个地点的技术和架构。在现代互联网架构中&#xff0c;CDN已经变得非常重要。CDN通过将内容分发到靠近用户的服务器上&#xff0c;提供高速、高效的服务。下面是C…...

如何利用React和Python构建强大的网络爬虫应用

如何利用React和Python构建强大的网络爬虫应用 引言&#xff1a; 网络爬虫是一种自动化程序&#xff0c;用于通过互联网抓取网页数据。随着互联网的不断发展和数据的爆炸式增长&#xff0c;网络爬虫越来越受欢迎。本文将介绍如何利用React和Python这两种流行的技术&#xff0c…...

炎黄数智人:招商局集团推出AI数字员工“招小影”

引言 在全球数字化浪潮的推动下&#xff0c;招商局集团开启了一项具有里程碑意义的项目。招商局集团将引入AI数字员工“招小影”&#xff0c;这一举措不仅彰显了招商局集团在智能化转型方面的坚定决心&#xff0c;也为企业管理模式的创新注入了新的活力。 “招小影”是一款集成…...

【开发篇】明明配置跨域声明,为什么却仍可以发送HTTP请求

一、问题 在SpringBoot项目中&#xff0c;明确指定仅允许指定网站跨域访问&#xff1a; 为什么开发人员却仍旧可以通过HTTP工具调用接口&#xff1f; 二、为什么 在回答这个问题之前&#xff0c;我们首先要了解一下什么是CORS&#xff01; 1、什么是CORS CORS的全称为跨域资源…...

单片机中有FLASH为啥还需要EEROM?

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「单片机的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01; 一是EEPROM操作简单&…...

Qt的源码目录集合(V5.12.12版本)

目录 1.QObject实现源码 2.qml中的ListModel实现源码 3.qml中的JS运行时的环境和数据类型源码 1.QObject实现源码 .\Qt\Qt5.12.12\5.12.12\Src\qtbase\src\corelib\kernel\qobject.h .\Qt\Qt5.12.12\5.12.12\Src\qtbase\src\corelib\kernel\qobject.cpp .\Qt\Qt5.12.12\5…...

记因hive配置文件参数运用不当导致 sqoop MySQL导入数据到hive 失败的案例

sqoop MySQL导入数据到hive报错 ERROR tool.ImportTool: Encountered IOException running import job: java.io.IOException: Hive exited with status 64 报错解释&#xff1a; 这个错误表明Sqoop在尝试导入数据到Hive时遇到了问题&#xff0c;导致Hive进程异常退出。状态码…...

自动化邮件通知:批处理脚本的通讯增强

自动化邮件通知&#xff1a;批处理脚本的通讯增强 引言 批处理脚本在自动化任务中扮演着重要角色&#xff0c;无论是在系统管理、数据处理还是日常任务调度中。然而&#xff0c;批处理脚本的自动化能力可以通过集成邮件通知功能得到显著增强。当脚本执行完毕或在执行过程中遇…...

236、二叉树的最近公共祖先

前提&#xff1a; 所有 Node.val 互不相同 。p ! qp 和 q 均存在于给定的二叉树中。 代码如下&#xff1a; class Solution { public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root q || root p || root NULL) return root;TreeN…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)

Name&#xff1a;3ddown Serial&#xff1a;FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名&#xff1a;Axure 序列号&#xff1a;8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...

SQL进阶之旅 Day 22:批处理与游标优化

【SQL进阶之旅 Day 22】批处理与游标优化 文章简述&#xff08;300字左右&#xff09; 在数据库开发中&#xff0c;面对大量数据的处理任务时&#xff0c;单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”&#xff0c;深入探讨如何通过批量操作和游标技术提…...

欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!

多连接 BLE 怎么设计服务不会乱&#xff1f;分层思维来救场&#xff01; 作者按&#xff1a; 你是不是也遇到过 BLE 多连接时&#xff0c;调试现场像网吧“掉线风暴”&#xff1f; 温度传感器连上了&#xff0c;心率带丢了&#xff1b;一边 OTA 更新&#xff0c;一边通知卡壳。…...