不同集成学习算法的比较:随机森林、AdaBoost、XGBoost、LightGBM
好的,我来为您比较一些常见的集成学习算法,并生成表格形式以便于对比:
算法 | 主要思想和特点 | 应用场景 | 并行处理支持 | 稳定性和鲁棒性 | 主要优化策略和技术 |
---|---|---|---|---|---|
AdaBoost | 使用加权投票组合多个弱分类器,逐步提升分类器性能 | 二分类和多分类问题,简单数据集 | 不易并行化 | 对异常值敏感 | 样本权重调整,顺序训练 |
Gradient Boosting | 通过减少残差的梯度来逐步构建一个强分类器 | 回归和分类问题,处理中等规模数据集 | 部分并行化 | 相对稳定 | 梯度信息利用,顺序化分裂节点 |
XGBoost | 优化的提升树算法,结合正则化和二阶梯度优化 | 结构化数据的回归和分类问题,大规模数据集 | 高度并行化 | 较高稳定性 | 正则化,特征分裂策略,并行化训练 |
LightGBM | 基于Histogram的提升树算法,效率高,速度快 | 大规模数据集的回归和分类问题 | 高度并行化 | 较高稳定性 | 直方图加速,并行化训练 |
CatBoost | 处理分类变量,具有自动处理缺失值和稀疏特征的能力 | 处理各种类型的数据,包括分类变量和数值型数据 | 部分并行化 | 高稳定性 | 对分类变量的处理,梯度提升 |
Random Forest | 通过随机选择特征和样本来构建多棵决策树,随机性强 | 处理高维度数据和非线性关系 | 高度并行化 | 相对稳定 | 随机特征选择,随机森林的平均效果 |
这个表格列出了几种常见的集成学习算法,包括AdaBoost、Gradient Boosting、XGBoost、LightGBM、CatBoost和Random Forest。它们各自的主要特点、应用场景、并行处理支持、稳定性和优化策略有所不同,选择适合的算法取决于具体的数据和任务需求。
相关文章:
不同集成学习算法的比较:随机森林、AdaBoost、XGBoost、LightGBM
好的,我来为您比较一些常见的集成学习算法,并生成表格形式以便于对比: 算法主要思想和特点应用场景并行处理支持稳定性和鲁棒性主要优化策略和技术AdaBoost使用加权投票组合多个弱分类器,逐步提升分类器性能二分类和多分类问题&a…...

【聊聊原子性,中断,以及nodejs中的具体示例】
什么是原子性 从一个例子说起, x ,读和写 , 如图假设多线程,线程1和线程2同时操作变量x,进行x的操作,那么由于写的过程中,都会先读一份x数据到cpu的寄存器中,所以这个时候cpu1 和 c…...
常见网络端口号
在网络工程领域,了解和掌握默认端口号是至关重要的。端口号是计算机网络中最基本的概念之 一,用于标识特定的网络服务或应用程序。 1、什么是端口号? 端口号是计算机网络中的一种标识,用于区分不同的网络服务和应用程序。每个端…...

【数值计算库-超长笔记】Python-Mpmath库:高精度数值计算
原文链接:https://www.cnblogs.com/aksoam/p/18279394 更多精彩,关注博客园主页,不断学习!不断进步! 我的主页 csdn很少看私信,有事请b站私信 博客园主页-发文字笔记-常用 有限元鹰的主页 内容…...

昇思25天学习打卡营第6天|函数式自动微分
函数式自动微分 相关前置知识复习 深度学习的重点之一是神经网络。而神经网络很重要的一环是反向传播算法,这个算法用于调整神经网络的权重。 反向传播算法 这里举例说明反向传播在做什么。 假设你是一个学生,一次考试过后,你收到了一份老…...

作业7.2
用结构体数组以及函数完成: 录入你要增加的几个学生,之后输出所有的学生信息 删除你要删除的第几个学生,并打印所有的学生信息 修改你要修改的第几个学生,并打印所有的学生信息 查找你要查找的第几个学生,并打印该的学生信息 1 /*…...
PCL 点云聚类(基于体素连通性)
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 这里的思路很简单,我们通过将点云转换为体素,基于体素的连通性实现对点云的聚类(有点类似于欧式聚类),不过这种方式进行的聚类有些粗糙,但聚类速度相对会快很多,具体的实现效果可以详细阅读代码。 二、实现代…...

python自动化运维--DNS处理模块dnspython
1.dnspython介绍 dnspython是Pyhton实现的一个DNS工具包,他几乎支持所有的记录类型,可以用于查询、传输并动态更新ZONE信息,同事支持TSIG(事物签名)验证消息和EDNS0(扩展DNS)。在系统管理方面&a…...

成人职场商务英语学习柯桥外语学校|邮件中的“备注”用英语怎么说?
在英语中,"备注"通常可以翻译为"Notes" 或 "Remarks"。 这两个词在邮件中都很常用。例如: 1. Notes Notes: 是最通用和最常见的表达,可以用在各种情况下,例如: 提供有关电子邮件内容的附加信息 列…...
AndroidStudio报错macMissing essential plugin
电脑重启后打开studio: Missing essential plugin: org.jetbrains.android Please reinstall Android Studio from scratch. 无法使用 对应Mac下disabled_plugins.txt位于如下目录: /Users/ACB/Library/Application Support/Google/AndroidStudio4.2 …...
doris集群物理部署保姆级教程
doris物理安装 1、安装要求 Linux 操作系统版本需求 查看CentOs版本(>7.1) cat /etc/redhat-release 1)设置系统最大打开文件句柄数 vi /etc/security/limits.conf soft nofile 65536hard nofile 65536 echo ‘’’ soft nofile 655360hard nofile 655…...

探囊取物之多形式登录页面(基于BootStrap4)
基于BootStrap4的登录页面,支持手机验证码登录、账号密码登录、二维码登录、其它统一登录 低配置云服务器,首次加载速度较慢,请耐心等候;演练页面可点击查看源码 预览页面:http://www.daelui.com/#/tigerlair/saas/pr…...

【ONLYOFFICE】| 桌面编辑器从0-1使用初体验
目录 一. 🦁 写在前面二. 🦁 在线使用感受2.1 创建 ONLYOFFICE 账号2.2 编辑pdf文档2.3 pdf直接创建表格 三. 🦁 写在最后 一. 🦁 写在前面 所谓桌面编辑器就是一种用于编辑文本、图像、视频等多种自媒体的软件工具,具…...
20、PHP字符串的排列(含源码)
题目: PHP字符串的排列? 描述: 输入一个字符串,按字典序打印出该字符串中字符的所有排列。 例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba。 输入描述: 输入一个字符串,长度不超过9(可…...

Linux 标准IO的fopen和fclose
getchar(),putchar() ‐‐‐‐ 一个字符 gets(buf),puts(buf) ‐‐‐‐ 一串字符 scanf(),printf() ‐‐‐‐ 一个字符,一串字符都可以 fopen函数的形式 FILE * fopen(constchar *path , cost char *mode) /* * description : 打开一个文件 * param ‐ path…...
一个计算密集小程序在不同CPU下的表现
本文比较了几款CPU对同一测试程序的比较结果,用的是Oracle公有云OCI上的计算实例,均分配的1 OCPU,内存用的默认值,不过内存对此测试程序运行结果不重要。 本文只列结果,不做任何评价。下表中,最后一列为测…...

圈子系统搭建教程,以及圈子系统的功能特点,圈子系统,允许二开,免费源码,APP小程序H5
圈子是一款社区与群组的交友工具。你可以在软件内创造一个兴趣的群组从而达到按圈子来交友的效果用户可以根据自己的兴趣爱好。 1. 创建圈子 轻松创建专属圈子,支持付费型社群。 2. 加入圈子 加入不同圈子,设置不同名片,保护隐私。 3. 定…...

递归算法练习
112. 路径总和 package Tree;import java.util.HashMap; import java.util.Map;class TreeNode {int val;TreeNode left;TreeNode right;public TreeNode(int val) {this.val val;} }/*** 求 树的路径和* <p>* 递归 递减* <p>* 询问是否存在从*当前节点 root 到叶…...
WebDriver 类的常用属性和方法
目录 🎍简介 🎊WebDriver 核心概念 🎉WebDriver 常用属性 🎁WebDriver 常用方法 🐷示例代码 🎪注意事项 🎐结语 🧣参考资料 🎍简介 Selenium WebDriver 是一个用…...

基于x86+FPGA+AI轴承缺陷视觉检测系统,摇枕弹簧智能检测系统
一、承缺陷视觉检测系统 应用场景 轴类零件自动检测设备,集光、机、软件、硬件,智能图像处理等先进技术于一体,利用轮廓特征匹配,目标与定位,区域选取,边缘提取,模糊运算等算法实现人工智能高…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...