当前位置: 首页 > news >正文

JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测

JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测

目录

    • JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现BO-Transformer-LSTM多变量回归预测,贝叶斯优化Transformer结合LSTM长短期记忆神经网络多变量回归预测,BO-Transformer-LSTM/Bayes-Transformer-LSTM(程序可以作为JCR一区级论文代码支撑,目前尚未发表);

2.贝叶斯优化参数为:学习率,LSTM隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现BO-Transformer-LSTM多变量回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end%%  创建待优化函数
ObjFcn = @BOFunction;%%  贝叶斯优化参数范围
optimVars = [

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关文章:

JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测

JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测 目录 JCR一区级 | Matlab实现BO-Transformer-LSTM多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现BO-Transformer-LSTM多变量回归预测,贝叶斯优化Transformer结合LSTM长…...

软件开发环境-系统架构师(二十一)

1、对计算机评价的主要性能指标有时钟频率、()、运算精度和内存容量等。 对数据库管理系统评价的主要性能指标有()、数据库所允许索引数量和最大并发事务处理能力。 问题1 A丢包率 B端口吞吐量 C可移植性 D数据处理速率 问题…...

AI与大模型工程师证书研修班报名啦!

人工智能大模型是指拥有超大规模参数(通常在十亿个以上)、超强计算资源的机器学习模型,能够处理海量数据,完成各种复杂任务,如自然语言处理、图像识别等。计算机硬件性能不断提升,深度学习算法快速优化&…...

ctfshow-web入门-命令执行(web56、web57、web58)

目录 1、web56 2、web57 3、web58 1、web56 命令执行&#xff0c;需要严格的过滤 新增过滤数字&#xff0c;只能采用上一题临时文件上传的方法&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><…...

controller不同的后端路径对应vue前端传递数据发送请求的方式,vue请求参数 param 与data 如何对应后端参数

目录 案例一&#xff1a; 为什么使用post发送请求&#xff0c;参数依旧会被拼接带url上呢&#xff1f;这应该就是param 与data传参的区别。即param传参数参数会被拼接到url后&#xff0c;data会以请求体传递 补充&#xff1a;后端controller 参数上如果没写任何注解&#xff0c…...

【FFmpeg】avcodec_send_frame函数

目录 1.avcodec_send_frame1.1 将输入的frame存入内部buffer&#xff08;encode_send_frame_internal&#xff09;1.1.1 frame的引用函数&#xff08;av_frame_ref &#xff09;1.1.1.1 帧属性的拷贝&#xff08;frame_copy_props&#xff09;1.1.1.2 buffer的引用函数&#xf…...

python获取字符编码

在Python中&#xff0c;您可以使用内置的ord()函数获取单个字符的Unicode编码&#xff0c;使用encode()方法获取字符串的字节编码。 获取单个字符的Unicode编码: char a unicode_code ord(char) print(unicode_code) # 输出字符的Unicode编码 获取字符串的字节编码: tex…...

通过MATLAB控制TI毫米波雷达的工作状态之实时数据采集

前言 前一章博主介绍了如何基于MATLAB的各种前面板组件结合MATLAB代码来发送CFG指令控制毫米波雷达的工作状态,这一章节博主将介绍如何基于这些组件结合MATLAB代码来实现TI毫米波雷达数据的实时采集。目前大部分TI毫米波雷达的数据采集均是仅可以采集一段数据又或者利用DAC10…...

华为HCIP Datacom H12-821 卷21

1.单选题 以下关于PIM-SM中SPT切换的描述,错误的是哪一项? A、若所有组播流量都经过RP路由器,则RP路由器可能成为数据转发的瓶颈 B、SPT路径最短,转发性能更优 C、SPT 切换完成后,组播流量依然经过 ReT 树 D、RPT 树可能不是组播流量转发的最优路径 正确答案: C 解析…...

MySQL之应用层优化(二)

应用层优化 Web服务器问题 寻找最优并发度 每个Web服务器都有一个最佳并发度——就是说&#xff0c;让进程处理请求尽可能快&#xff0c;并且不超过系统负载的最优的并发连接数。这就是前面说的最大系统容量。进行一个简单的测量和建模&#xff0c;或者只是反复试验&#xf…...

Java源码解读之常量52429

文章目录 为什么有52429的常量呢&#xff1f;对于为什么选择52429?那么为什么不再选几位呢&#xff1f; 在JDK8源码中 java.lang.Integer有52429作为常量出现&#xff0c; 为什么有52429的常量呢&#xff1f; static void getChars(int i, int index, char[] buf) {int q, r;…...

“Photoshop AI插件:StartAI的全面使用攻略

随着人工智能技术的飞速发展&#xff0c;Photoshop作为设计师们不可或缺的工具&#xff0c;也在不断地融入AI技术&#xff0c;以提升设计效率和效果。在2024年&#xff0c;PSAI插件StartAI因其强大的功能和易用性&#xff0c;成为了Photoshop用户的得力帮手。下面来给大家详细介…...

入门Axure:快速掌握原型设计技能

2002 年&#xff0c;维克托和马丁在旧金山湾区的一家初创公司工作&#xff0c;发现自己一再被软件开发生命周期的限制所困扰&#xff0c;而且产品团队在编写规范之前很难评估他们的解决方案&#xff0c;开发人员经常不理解&#xff08;或不阅读&#xff09;给出的规范&#xff…...

Java中的序列化与反序列化详解

Java中的序列化与反序列化详解 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 什么是序列化与反序列化&#xff1f; 序列化&#xff08;Serialization&#…...

在鸿蒙开发中如何实现皮肤切换?

在鸿蒙开发中&#xff0c;实现主题皮肤切换可以通过以下步骤&#xff1a; 1. 创建不同的主题样式文件&#xff0c;例如theme_light.json和theme_dark.json。 2. 在应用程序的config.json文件中&#xff0c;引入这些主题样式文件。 3. 在应用程序的入口文件&#xff08;例如main…...

FlowUs新一代内容创作营销平台|FlowUs息流国产 好用 不限速

FlowUs 作为一个知识管理和协作平台&#xff0c;知识库功能可以被视为一个强大的学习工具&#xff01; 为什么FlowUs知识库可以成为学习利器呢&#xff1f;原因有以下几点 集中化知识存储&#xff1a;FlowUs允许我们将所有相关信息和资料集中在一个地方&#xff0c;便于访问和复…...

WebSocket解决方案(springboot 基于Redis发布订阅)

WebSocket 因为一般的请求都是HTTP请求&#xff08;单向通信&#xff09;&#xff0c;HTTP是一个短连接&#xff08;非持久化&#xff09;&#xff0c;且通信只能由客户端发起&#xff0c;HTTP协议做不到服务器主动向客户端推送消息。WebSocket确能很好的解决这个问题&…...

如何优化网站SEO排名?

选择那些容易排名的关键词。使用工具找到那些竞争少但有流量的词语。其次&#xff0c;内部链接非常重要。通过合理的内部链接&#xff0c;可以提升各个页面的权重。 增加FAQ部分能帮助你捕捉更多的长尾关键词流量。争取出现在精选摘要的位置&#xff0c;可以直接提升你的曝光率…...

基于Java的音乐网站系统-计算机毕业设计源码01239

目 录 摘要 1 绪论 1.1 研究背景 1.2系统开发目标、意义 1.3研究内容 2 相关技术介绍 2.1 MySQL数据库 2.2 Java编程语言 2.3 SpringBoot框架介绍 3 系统需求分析与设计 3.1 可行性分析 3.1.1 技术可行性分析 3.1.2 经济可行性分析 3.1.3 法律可行性分析 3.2 需…...

云原生之容器编排实践-OpenEuler23.09在线安装Kubernetes与KubeSphere

背景 前几篇文章中介绍了如何将 ruoyi-cloud 项目部署到 Kubernetes 集群中&#xff0c;包括网关服务、认证服务和系统服务并且对全部服务采用 YAML 文件的方式来进行部署&#xff0c;这虽然有助于理解 K8S 组织管理资源的风格与底层机制&#xff0c;但是对于团队中不太熟悉命…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...