探索 TensorFlow 模型的秘密:TensorBoard 详解与实战
简介
TensorBoard 是 TensorFlow 提供的可视化工具,帮助开发者监控和调试机器学习模型。它提供了多种功能,包括查看损失和精度曲线、可视化计算图、检查数据分布等。下面将介绍如何使用 TensorBoard。
1. 安装 TensorBoard
如果尚未安装 TensorBoard,可以通过以下命令安装:
pip install tensorboard
2. 配置 TensorBoard
在训练模型时,需要将日志数据写入文件。这通常通过 tf.summary API 完成。
示例:使用 Keras 进行训练
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import datetime# 加载数据
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()# 预处理数据
train_images = train_images[..., tf.newaxis] / 255.0
test_images = test_images[..., tf.newaxis] / 255.0# 创建模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10)
])# 编译模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 创建 TensorBoard 回调
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)# 训练模型
model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels),callbacks=[tensorboard_callback])
3. 启动 TensorBoard
训练完成后,使用以下命令启动 TensorBoard 服务器:
tensorboard --logdir=logs/fit
这会在本地服务器上启动 TensorBoard,通常是 http://localhost:6006。打开浏览器访问该地址,即可查看训练过程中记录的日志数据。
4. 使用 TensorBoard 可视化
TensorBoard 提供了多种标签页,每个标签页展示不同类型的信息:
- Scalars:显示标量值,如损失和精度。
- Graphs:显示计算图,帮助理解模型结构。
- Histograms:显示数据的分布情况。
- Distributions:显示张量值随时间变化的分布。
- Images:显示图像数据。
- Text:显示文本数据。
5. 自定义 TensorBoard 日志
除了 Keras 回调,你还可以手动记录自定义的 TensorBoard 日志。例如,记录自定义标量值:
import tensorflow as tf
import datetime# 创建文件编写器
log_dir = "logs/custom/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
writer = tf.summary.create_file_writer(log_dir)with writer.as_default():for step in range(100):tf.summary.scalar('custom_scalar', step ** 2, step=step)
6. 高级用法
TensorBoard 还支持多运行对比、自定义插件等高级功能。详细信息可以参考 TensorBoard 的官方文档和教程。
参考资料
- TensorBoard 官方文档
- TensorFlow 官方教程
相关文章:
探索 TensorFlow 模型的秘密:TensorBoard 详解与实战
简介 TensorBoard 是 TensorFlow 提供的可视化工具,帮助开发者监控和调试机器学习模型。它提供了多种功能,包括查看损失和精度曲线、可视化计算图、检查数据分布等。下面将介绍如何使用 TensorBoard。 1. 安装 TensorBoard 如果尚未安装 TensorBoard&…...
yolov8obb角度预测原理解析
预测头 ultralytics/nn/modules/head.py class OBB(Detect):"""YOLOv8 OBB detection head for detection with rotation models."""def __init__(self, nc80, ne1, ch()):"""Initialize OBB with number of classes nc and la…...
CICD之Git版本管理及基本应用
CICD:持续集成,持续交付--让对应的资料,对应的项目流程更加规范--提高效率 CICD 有很多的工具 GIT就是其中之一 1.版本控制概念与环境搭建 GIT的概念: Git是一款分布式源代码管理工具(版本控制工具) ,一个协同的工具。 Git得其数据更像是一系列微型文件系统的快照。使用Git&am…...
Python作用域及其应用
Python的作用域规则决定了变量在代码中的可见性和访问性。全局作用域中定义的变量可以在整个程序中访问,而局部作用域中定义的变量则只能在其被创建的函数或代码块中访问。 全局作用域与局部作用域 全局作用域中的变量通常在程序的顶层定义,可以被整个…...
谷歌上架,应用被Google play下架之后,活跃用户会暴跌?这是为什么?
在Google play上架应用,开发者们最不想到看到就是应用被下架了。这意味着所有的努力都将付诸东流,因为有的应用一但被下架,活跃用户也随之嗖嗖地往下掉,这事儿可真不是闹着玩的,严重影响了收益! 为什么你的…...
web安全渗透测试十大常规项(一):web渗透测试之Fastjson反序列化
渗透测试之Java反序列化 1. Fastjson反序列化1.1 FastJson反序列化链知识点1.2 FastJson反序列化链分析1.3.1 FastJson 1.2.24 利用链分析1.3.2 FastJson 1.2.25-1.2.47 CC链分析1.3.2.1、开启autoTypeSupport:1.2.25-1.2.411.3.2.2 fastjson-1.2.42 版本绕过1.3.2.3 fastjson…...
Unity 3D软件下载安装;Unity 3D游戏制作软件资源包获取!
Unity3D,它凭借强大的功能和灵活的特性,在游戏开发和互动内容创作领域发挥着举足轻重的作用。 作为一款顶尖的游戏引擎,Unity3D内置了先进的物理引擎——PhysX。这一物理引擎堪称业界翘楚,能够为开发者提供全方位、高精度的物理模…...
PyTorch之nn.Module与nn.functional用法区别
文章目录 1. nn.Module2. nn.functional2.1 基本用法2.2 常用函数 3. nn.Module 与 nn.functional3.1 主要区别3.2 具体样例:nn.ReLU() 与 F.relu() 参考资料 1. nn.Module 在PyTorch中,nn.Module 类扮演着核心角色,它是构建任何自定义神经网…...
2024.06.24 校招 实习 内推 面经
绿*泡*泡VX: neituijunsir 交流*裙 ,内推/实习/校招汇总表格 1、校招 | 昂瑞微2025届校园招聘正式启动 校招 | 昂瑞微2025届校园招聘正式启动 2、实习 | 东风公司研发总院暑期实习生火爆招募中 实习 | 东风公司研发总院暑期实习生火爆招募中 3、实习…...
【C++】using namespace std 到底什么意思
📢博客主页:https://blog.csdn.net/2301_779549673 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📢本文作为 JohnKi 的学习笔记,引用了部分大佬的案例 📢未来很长&a…...
基于ESP32 IDF的WebServer实现以及OTA固件升级实现记录(三)
经过前面两篇的前序铺垫,对webserver以及restful api架构有了大体了解后本篇描述下最终的ota实现的代码以及调试中遇到的诡异bug。 eps32的实际ota实现过程其实esp32官方都已经基本实现好了,我们要做到无非就是把要升级的固件搬运到对应ota flash分区里面…...
116-基于5VLX110T FPGA FMC接口功能验证6U CPCI平台
一、板卡概述 本板卡是Xilinx公司芯片V5系列芯片设计信号处理板卡。由一片Xilinx公司的XC5VLX110T-1FF1136 / XC5VSX95T-1FF1136 / XC5VFX70T-1FF1136芯片组成。FPGA接1片DDR2内存条 2GB,32MB Nor flash存储器,用于存储程序。外扩 SATA、PCI、PCI expres…...
Android - Json/Gson
Json数据解析 json对象:花括号开头和结尾,中间是键值对形式————”属性”:属性值”” json数组:中括号里放置 json 数组,里面是多个json对象或者数字等 JSONObject 利用 JSONObject 解析 1.创建 JSONObject 对象,传…...
盲信号处理的发展现状
盲源分离技术最早在上个世纪中期提出,在1991年Herault和Jutten提出基于反馈神经网络的盲源分离方法,但该方法缺乏理论基础,后来Tong和Liu分析了盲源分离问题的可辨识性和不确定性,Cardoso于1993年提出了基于高阶统计的联合对角化盲…...
二轴机器人装箱机:重塑物流效率,精准灵活,引领未来装箱新潮流
在现代化物流领域,高效、精准与灵活性无疑是各大企业追求的核心目标。而在这个日益追求自动化的时代,二轴机器人装箱机凭借其较佳的性能和出色的表现,正逐渐成为装箱作业的得力助手,引领着未来装箱新潮流。 一、高效:重…...
使用python做飞机大战
代码地址: 点击跳转...
Python面向对象编程:派生
本套课在线学习视频(网盘地址,保存到网盘即可免费观看): https://pan.quark.cn/s/69d1cc25d4ba 面向对象编程(OOP)是一种编程范式,它通过将数据和操作数据的方法封装在一起࿰…...
华为仓颉编程语言
目录 一、引言 二、仓颉编程语言概述 三、技术特征 四、应用场景 五、社区支持 六、结论与展望 一、引言 随着信息技术的快速发展,编程语言作为软件开发的核心工具,其重要性日益凸显。近年来,华为公司投入大量研发资源,成功…...
【微信小程序开发实战项目】——如何制作一个属于自己的花店微信小程序(2)
👨💻个人主页:开发者-曼亿点 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 曼亿点 原创 👨💻 收录于专栏:…...
解锁数据资产的无限潜能:深入探索创新的数据分析技术,挖掘其在实际应用场景中的广阔价值,助力企业发掘数据背后的深层信息,实现业务的持续增长与创新
目录 一、引言 二、创新数据分析技术的发展 1、大数据分析技术 2、人工智能与机器学习 3、可视化分析技术 三、创新数据分析技术在实际应用场景中的价值 1、市场洞察与竞争分析 2、客户细分与个性化营销 3、业务流程优化与风险管理 4、产品创新与研发 四、案例分析 …...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...
