PyTorch之nn.Module与nn.functional用法区别
文章目录
- 1. nn.Module
- 2. nn.functional
- 2.1 基本用法
- 2.2 常用函数
- 3. nn.Module 与 nn.functional
- 3.1 主要区别
- 3.2 具体样例:nn.ReLU() 与 F.relu()
- 参考资料
1. nn.Module
在PyTorch中,nn.Module 类扮演着核心角色,它是构建任何自定义神经网络层、复杂模块或完整神经网络架构的基础构建块。通过继承 nn.Module 并在其子类中定义模型结构和前向传播逻辑(forward() 方法),开发者能够方便地搭建并训练深度学习模型。
关于 nn.Module
的更多介绍可以参考博客:PyTorch之nn.Module、nn.Sequential、nn.ModuleList使用详解
这里,我们基于nn.Module
创建一个简单的神经网络模型,实现代码如下:
import torch
import torch.nn as nnclass MyModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MyModel, self).__init__()self.layer1 = nn.Linear(input_size, hidden_size)self.layer2 = nn.Linear(hidden_size, output_size)def forward(self, x):x = torch.relu(self.layer1(x))x = self.layer2(x)return x
2. nn.functional
nn.functional
是PyTorch中一个重要的模块,它包含了许多用于构建神经网络的函数。与 nn.Module
不同,nn.functional
中的函数不具有可学习的参数。这些函数通常用于执行各种非线性操作、损失函数、激活函数等。
2.1 基本用法
如何在神经网络中使用nn.functional?
在PyTorch中,你可以轻松地在神经网络中使用 nn.functional
函数。通常,你只需将输入数据传递给这些函数,并将它们作为网络的一部分。
以下是一个简单的示例,演示如何在一个全连接神经网络中使用ReLU激活函数:
import torch.nn as nn
import torch.nn.functional as Fclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc1 = nn.Linear(64, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = F.relu(self.fc1(x))x = self.fc2(x)return x
在上述示例中,我们首先导入nn.functional 模块,然后在网络的forward 方法中使用F.relu 函数作为激活函数。
nn.functional
的主要优势是它的计算效率和灵活性,因为它允许你以函数的方式直接调用这些操作,而不需要创建额外的层。
2.2 常用函数
(1)激活函数
激活函数是神经网络中的关键组件,它们引入非线性性,使网络能够拟合复杂的数据。以下是一些常见的激活函数:
- ReLU(Rectified Linear Unit)
ReLU是一种简单而有效的激活函数,它将输入值小于零的部分设为零,大于零的部分保持不变。它的数学表达式如下:
output = F.relu(input)
- Sigmoid
Sigmoid函数将输入值映射到0和1之间,常用于二分类问题的输出层。它的数学表达式如下:
output = F.sigmoid(input)
- Tanh(双曲正切)
Tanh函数将输入值映射到-1和1之间,它具有零中心化的特性,通常在循环神经网络中使用。它的数学表达式如下:
output = F.tanh(input)
(2)损失函数
损失函数用于度量模型的预测与真实标签之间的差距。PyTorch的nn.functional 模块包含了各种常用的损失函数,例如:
- 交叉熵损失(Cross-Entropy Loss)
交叉熵损失通常用于多分类问题,计算模型的预测分布与真实分布之间的差异。它的数学表达式如下:
loss = F.cross_entropy(input, target)
- 均方误差损失(Mean Squared Error Loss)
均方误差损失通常用于回归问题,度量模型的预测值与真实值之间的平方差。它的数学表达式如下:
loss = F.mse_loss(input, target)
- L1 损失
L1损失度量预测值与真实值之间的绝对差距,通常用于稀疏性正则化。它的数学表达式如下:
loss = F.l1_loss(input, target)
(3)非线性操作
nn.functional 模块还包含了许多非线性操作,如池化、归一化等。
- 最大池化(Max Pooling)
最大池化是一种用于减小特征图尺寸的操作,通常用于卷积神经网络中。它的数学表达式如下:
output = F.max_pool2d(input, kernel_size)
- 批量归一化(Batch Normalization)
批量归一化是一种用于提高训练稳定性和加速收敛的技术。它的数学表达式如下:
output = F.batch_norm(input, mean, std, weight, bias)
3. nn.Module 与 nn.functional
3.1 主要区别
nn.Module 与 nn.functional 的主要区别在于:
- nn.Module实现的layers是一个特殊的类,都是由class Layer(nn.Module)定义,会自动提取可学习的参数;
- nn.functional中的函数更像是纯函数,由def function(input)定义。
注意:
- 如果模型有可学习的参数时,最好使用nn.Module。
- 激活函数(ReLU、sigmoid、Tanh)、池化(MaxPool)等层没有可学习的参数,可以使用对应的functional函数。
- 卷积、全连接等有可学习参数的网络建议使用nn.Module。
- dropout没有可学习参数,但建议使用nn.Dropout而不是nn.functional.dropout。
3.2 具体样例:nn.ReLU() 与 F.relu()
nn.ReLU() :
import torch.nn as nn
'''
nn.ReLU()
F.relu():
import torch.nn.functional as F
'''
out = F.relu(input)
其实这两种方法都是使用relu激活,只是使用的场景不一样,F.relu()是函数调用,一般使用在foreward函数里。而nn.ReLU()是模块调用,一般在定义网络层的时候使用。
当用print(net)输出时,nn.ReLU()会有对应的层,而F.ReLU()是没有输出的。
import torch.nn as nn
import torch.nn.functional as Fclass NET1(nn.Module):def __init__(self):super(NET1, self).__init__()self.conv = nn.Conv2d(3, 16, 3, 1, 1)self.bn = nn.BatchNorm2d(16)self.relu = nn.ReLU() # 模块的激活函数def forward(self, x):out = self.conv(x)x = self.bn(x)out = self.relu()return outclass NET2(nn.Module):def __init__(self):super(NET2, self).__init__()self.conv = nn.Conv2d(3, 16, 3, 1, 1)self.bn = nn.BatchNorm2d(16)def forward(self, x):x = self.conv(x)x = self.bn(x)out = F.relu(x) # 函数的激活函数return outnet1 = NET1()
net2 = NET2()
print(net1)
print(net2)
参考资料
- PyTorch的nn.Module类的详细介绍
- PyTorch
nn.functional
模块详解:探索神经网络的魔法工具箱 - pytorch:F.relu() 与 nn.ReLU() 的区别
相关文章:

PyTorch之nn.Module与nn.functional用法区别
文章目录 1. nn.Module2. nn.functional2.1 基本用法2.2 常用函数 3. nn.Module 与 nn.functional3.1 主要区别3.2 具体样例:nn.ReLU() 与 F.relu() 参考资料 1. nn.Module 在PyTorch中,nn.Module 类扮演着核心角色,它是构建任何自定义神经网…...
2024.06.24 校招 实习 内推 面经
绿*泡*泡VX: neituijunsir 交流*裙 ,内推/实习/校招汇总表格 1、校招 | 昂瑞微2025届校园招聘正式启动 校招 | 昂瑞微2025届校园招聘正式启动 2、实习 | 东风公司研发总院暑期实习生火爆招募中 实习 | 东风公司研发总院暑期实习生火爆招募中 3、实习…...

【C++】using namespace std 到底什么意思
📢博客主页:https://blog.csdn.net/2301_779549673 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📢本文作为 JohnKi 的学习笔记,引用了部分大佬的案例 📢未来很长&a…...

基于ESP32 IDF的WebServer实现以及OTA固件升级实现记录(三)
经过前面两篇的前序铺垫,对webserver以及restful api架构有了大体了解后本篇描述下最终的ota实现的代码以及调试中遇到的诡异bug。 eps32的实际ota实现过程其实esp32官方都已经基本实现好了,我们要做到无非就是把要升级的固件搬运到对应ota flash分区里面…...

116-基于5VLX110T FPGA FMC接口功能验证6U CPCI平台
一、板卡概述 本板卡是Xilinx公司芯片V5系列芯片设计信号处理板卡。由一片Xilinx公司的XC5VLX110T-1FF1136 / XC5VSX95T-1FF1136 / XC5VFX70T-1FF1136芯片组成。FPGA接1片DDR2内存条 2GB,32MB Nor flash存储器,用于存储程序。外扩 SATA、PCI、PCI expres…...

Android - Json/Gson
Json数据解析 json对象:花括号开头和结尾,中间是键值对形式————”属性”:属性值”” json数组:中括号里放置 json 数组,里面是多个json对象或者数字等 JSONObject 利用 JSONObject 解析 1.创建 JSONObject 对象,传…...
盲信号处理的发展现状
盲源分离技术最早在上个世纪中期提出,在1991年Herault和Jutten提出基于反馈神经网络的盲源分离方法,但该方法缺乏理论基础,后来Tong和Liu分析了盲源分离问题的可辨识性和不确定性,Cardoso于1993年提出了基于高阶统计的联合对角化盲…...

二轴机器人装箱机:重塑物流效率,精准灵活,引领未来装箱新潮流
在现代化物流领域,高效、精准与灵活性无疑是各大企业追求的核心目标。而在这个日益追求自动化的时代,二轴机器人装箱机凭借其较佳的性能和出色的表现,正逐渐成为装箱作业的得力助手,引领着未来装箱新潮流。 一、高效:重…...

使用python做飞机大战
代码地址: 点击跳转...
Python面向对象编程:派生
本套课在线学习视频(网盘地址,保存到网盘即可免费观看): https://pan.quark.cn/s/69d1cc25d4ba 面向对象编程(OOP)是一种编程范式,它通过将数据和操作数据的方法封装在一起࿰…...

华为仓颉编程语言
目录 一、引言 二、仓颉编程语言概述 三、技术特征 四、应用场景 五、社区支持 六、结论与展望 一、引言 随着信息技术的快速发展,编程语言作为软件开发的核心工具,其重要性日益凸显。近年来,华为公司投入大量研发资源,成功…...

【微信小程序开发实战项目】——如何制作一个属于自己的花店微信小程序(2)
👨💻个人主页:开发者-曼亿点 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 曼亿点 原创 👨💻 收录于专栏:…...

解锁数据资产的无限潜能:深入探索创新的数据分析技术,挖掘其在实际应用场景中的广阔价值,助力企业发掘数据背后的深层信息,实现业务的持续增长与创新
目录 一、引言 二、创新数据分析技术的发展 1、大数据分析技术 2、人工智能与机器学习 3、可视化分析技术 三、创新数据分析技术在实际应用场景中的价值 1、市场洞察与竞争分析 2、客户细分与个性化营销 3、业务流程优化与风险管理 4、产品创新与研发 四、案例分析 …...

Bridging nonnull in Objective-C to Swift: Is It Safe?
Bridging nonnull in Objective-C to Swift: Is It Safe? In the world of iOS development, bridging between Objective-C and Swift is a common practice, especially for legacy codebases (遗留代码库) or when integrating (集成) third-party libraries. One importa…...
算法训练 | 图论Part1 | 98.所有可达路径
目录 98.所有可达路径 深度搜索法 98.所有可达路径 题目链接:98. 所有可达路径 文章讲解:代码随想录 深度搜索法 代码一:邻接矩阵写法 #include <iostream> #include <vector> using namespace std; vector<vector<…...

【JVM基础篇】垃圾回收
文章目录 垃圾回收常见内存管理方式手动回收:C内存管理自动回收(GC):Java内存管理自动、手动回收优缺点 应用场景垃圾回收器需要对哪些部分内存进行回收?不需要垃圾回收器回收需要垃圾回收器回收 方法区的回收代码测试手动调用垃圾回收方法Sy…...

Spark join数据倾斜调优
Spark中常见的两种数据倾斜现象如下 stage部分task执行特别慢 一般情况下是某个task处理的数据量远大于其他task处理的数据量,当然也不排除是程序代码没有冗余,异常数据导致程序运行异常。 作业重试多次某几个task总会失败 常见的退出码143、53、137…...

YOLOv5初学者问题——用自己的模型预测图片不画框
如题,我在用自己的数据集训练权重模型的时候,在训练完成输出的yolov5-v5.0\runs\train\exp2目录下可以看到,在训练测试的时候是有输出描框的。 但是当我引用训练好的best.fangpt去进行预测的时候, 程序输出的图片并没有描框。根据…...

【linux学习---1】点亮一个LED---驱动一个GPIO
文章目录 1、原理图找对应引脚2、IO复用3、IO配置4、GPIO配置5、GPIO时钟使能6、总结 1、原理图找对应引脚 从上图 可以看出, 蜂鸣器 接到了 BEEP 上, BEEP 就是 GPIO5_IO05 2、IO复用 查找IMX6UL参考手册 和 STM32一样,如果某个 IO 要作为…...
Redis分布式锁代码实现详解
引言 在分布式系统中,资源竞争和数据一致性问题常常需要通过锁机制来解决。Redis作为一个高性能的键值存储系统,因其提供的原子操作、丰富的数据结构以及网络延迟低等特点,成为了实现分布式锁的理想选择。本文将详细介绍如何使用Redis来实现…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...