机器学习原理之 -- 支持向量机分类:由来及原理详解
支持向量机(Support Vector Machine, SVM)是统计学习理论的一个重要成果,广泛应用于分类和回归问题。SVM以其高效的分类性能和良好的泛化能力在机器学习领域中占据重要地位。本文将详细介绍支持向量机的由来、基本原理、构建过程及其优缺点。
二、支持向量机的由来
支持向量机的概念最早由Vladimir N. Vapnik和他的同事于20世纪60年代提出,后来在20世纪90年代得到了进一步的发展和推广。SVM的基础源自于统计学习理论中的结构风险最小化原则(Structural Risk Minimization, SRM),旨在通过优化模型复杂度和经验风险的平衡,达到最优的泛化能力。
三、支持向量机的基本原理
1. 线性可分支持向量机
对于线性可分的数据集,支持向量机通过找到一个最佳的超平面,将不同类别的数据点分开。该超平面最大化了两类数据点之间的间隔,从而提高分类的鲁棒性和泛化能力。
(1) 超平面
一个超平面可以表示为:
其中,w是超平面的法向量,b是偏置项,x是数据点。
(2) 间隔
间隔定义为超平面到最近数据点的距离。支持向量机通过最大化这个间隔来找到最优的超平面。间隔可以表示为:
最大化间隔的问题可以转化为一个凸优化问题,通过拉格朗日乘子法和KKT条件进行求解。
2. 线性不可分支持向量机
对于线性不可分的数据集,引入软间隔(Soft Margin)来允许一些数据点位于错误的一侧。软间隔支持向量机通过引入松弛变量,并最小化误分类代价来实现。
目标函数变为:
约束条件为:
其中,C是惩罚参数,用于控制间隔和误分类之间的权衡。
3. 非线性支持向量机
对于非线性数据,引入核函数(Kernel Function)将数据映射到高维空间,在高维空间中寻找最优超平面。常用的核函数包括线性核、多项式核、径向基函数核(RBF)和 sigmoid 核。
核函数的定义为:
其中,是将数据映射到高维空间的映射函数。
四、支持向量机的优缺点
1. 优点
- 高效的分类性能:SVM在高维空间中寻找最优超平面,能够处理复杂的分类任务。
- 良好的泛化能力:通过结构风险最小化原则,SVM在避免过拟合的同时具有较好的泛化能力。
- 适用于高维数据:SVM能够处理维数较高的数据,且有效避免维数灾难。
2. 缺点
- 计算复杂度高:对于大规模数据集,SVM的训练时间和内存消耗较大。
- 参数选择困难:核函数的选择和惩罚参数CCC的设定对模型性能影响较大,需要通过交叉验证等方法进行调参。
- 对缺失数据敏感:SVM对缺失数据较为敏感,需要进行数据预处理。
五、支持向量机的应用
支持向量机广泛应用于文本分类、图像识别、生物信息学、金融风控等领域。其强大的分类性能和良好的泛化能力使其成为解决复杂分类问题的重要工具。
六、结论
支持向量机作为一种强大的分类算法,通过引入结构风险最小化原则,在高维空间中寻找最优超平面,实现了高效的分类性能和良好的泛化能力。尽管在大规模数据集和参数选择方面存在一定的挑战,但其在实际应用中依然表现出色。理解和掌握支持向量机的基本原理,有助于更好地应用这一算法解决实际问题。
相关文章:
机器学习原理之 -- 支持向量机分类:由来及原理详解
支持向量机(Support Vector Machine, SVM)是统计学习理论的一个重要成果,广泛应用于分类和回归问题。SVM以其高效的分类性能和良好的泛化能力在机器学习领域中占据重要地位。本文将详细介绍支持向量机的由来、基本原理、构建过程及其优缺点。…...
华为机试HJ8合并表记录
华为机试HJ8合并表记录 题目: 数据表记录包含表索引index和数值value(int范围的正整数),请对表索引相同的记录进行合并,即将相同索引的数值进行求和运算,输出按照index值升序进行输出。 想法:…...
Leetcode 2043简易银行交易系统
题目描述 简易银行系统 尝试过 中等 相关标签 相关企业 提示 你的任务是为一个很受欢迎的银行设计一款程序,以自动化执行所有传入的交易(转账,存款和取款)。银行共有 n 个账户,编号从 1 到 n 。每个账号的初始余额存储…...
适合职场小白的待办事项管理方法和工具
刚入职场那会儿,我每天都像只无头苍蝇,忙得团团转却效率低下。待办事项像潮水般涌来,会议、报告、客户跟进……每一项都像是悬在头顶的利剑,让我焦虑不堪。我深知,管理好待办事项是职场生存的必修课,但该如…...
相机参数与图像处理技术解析
01. 相机内参和外参的含义?如果将图像放大两倍,内外参如何变化? 相机有两个最基础的数据:内参(Instrinsics)和外参(Extrinsics),内参主要描述的是相机的CCD/CMOS感光片尺寸/分辨率以及光学镜头的系数,外参主…...
Ubuntu20.04安装Prometheus监控系统
环境准备: 服务器名称内网IP公网IPPrometheus服务器192.168.0.23047.119.21.167Grafana服务器192.168.0.23147.119.22.8被监控服务器192.168.0.23247.119.22.82 更改主机名方便辨认 hostnamectl set-hostname prometheus hostnamectl set-hostname grafana hostn…...
kafka consumer客户端消费逻辑解析
kafka consumer客户端消费逻辑解析 一、主要步骤二、提交策略【步骤2代码解析】【提交策略总结】 三、拉取策略四、消费策略【代码解析】【消费策略总结】 一、主要步骤 这是kafka客户端拉取消息的入口,有4个主要部分 1、启动后的准备 consumer线程启动后ÿ…...
打印机出现多个副本无法删除
打印机出现多个副本很烦人,尤其是在打印机在局域网内被多个主机共享的时候,一旦出现新的副本,原有副本全都变成脱机状态,其他电脑连接的共享打印机是原来的副本,所以要重新设置打印机共享,很烦人。 想要删…...
FlinkSQL 开发经验分享
作者:汤包 最近做了几个实时数据开发需求,也不可避免地在使用 Flink 的过程中遇到了一些问题,比如数据倾斜导致的反压、interval join、开窗导致的水位线失效等问题,通过思考并解决这些问题,加深了我对 Flink 原理与机…...
JVM原理(十二):JVM虚拟机类加载过程
一个类型从被加载到虚拟机内存中开始,到卸载为止,它的整个生命周期将会经过 加载、验证、准备、解析、初始化、使用、卸载七个阶段。其中 验证、准备、解析三个部分统称为 连接 1. 加载 加载是整个类加载的一个过程。在加载阶段,Java虚拟机…...
Apipost接口测试工具的原理及应用详解(三)
本系列文章简介: 随着软件行业的快速发展,API(应用程序编程接口)作为不同软件组件之间通信的桥梁,其重要性日益凸显。API的质量直接关系到软件系统的稳定性、性能和用户体验。因此,对API进行严格的测试成为软件开发过程中不可或缺的一环。在众多API测试工具中,Apipost凭…...
unity里鼠标位置是否在物体上。
1. 使用Raycast 如果你的图片是在UI Canvas上,可以使用Raycast来检测鼠标点击是否在图片上。 using UnityEngine; using UnityEngine.EventSystems; using UnityEngine.UI; public class ImageClickChecker : MonoBehaviour { public Image targetImage; voi…...
Java知识点大纲
文章目录 第一阶段:JavaSE1、面向对象编程(基础)1)面向过程和面向对象区别2)类和对象的概述3)类的属性和方法4)创建对象内存分析5)构造方法(Construtor)及其重载6)对象类型的参数传递7)this关键字详解8)static关键字详解9)局部代码块、构造代码块和静态代码块10)pac…...
【Kafka】记录一次Kafka消费者重复消费问题
文章目录 现象业务背景排查过程Push与Pull 现象 用户反馈消费者出现消息积压,并且通过日志看,一直重复消费,且没有报错日志。 业务背景 用户的消费者是一个将文件做Embedding的任务,(由于AI技术的兴起,大…...
Android使用http加载自建服务器静态网页
最终效果如下图,成功加载了电脑端的静态网页内容,这是一个xml文件。 电脑端搭建http服务器 使用“Apache Http Server”,下载地址是:https://httpd.apache.org/download.cgi。 安装启动步骤,参考:Apach…...
python解耦重构,提高程序维护性
一、重构思想 思路来源 java spring设计模式学习,强调低耦合的思想,通过解耦来提高程序的可维护性。 二、代码重构 解决方案 通过单独配置文件来控制变量的改变。 spring的话可以读取xml或者是springboot 读取application.properties 来获取变量值。…...
深入解析 Laravel 事件系统:架构、实现与应用
Laravel 的事件系统是框架中一个强大且灵活的功能,它允许开发者在应用程序中定义和使用自定义事件和监听器。这个系统基于观察者模式,使得代码解耦和可维护性大大提高。在本文中,我们将深入探讨 Laravel 事件系统的工作原理、如何实现自定义事…...
视频怎么制作gif动态图片?GIF制作方法分享
视频怎么制作gif动态图片?视频制作GIF动态图片,不仅保留了视频的生动瞬间,还赋予了图像循环播放的魔力。这一技能不仅让创意表达更加丰富多彩,还极大地提升了视觉传播的效率和趣味性。在快节奏的数字时代,GIF动图以其小…...
js 使用 lodash-es 检测某个值是否是函数
import { isFunction } from lodash-eslet isA isFunction(() > {}) console.log(isA) //true https://www.lodashjs.com/docs/lodash.isFunction#_isfunctionvalue https://lodash.com/docs/4.17.15#isFunction 人工智能学习网站 https://chat.xutongbao.top...
[go-zero] goctl 生成api和rpc
文章目录 1.goctl 概述2.go-zero 需要安装的组件3.生成 api4.生成 rpc 1.goctl 概述 goctl支持多种rpc,较为流行的是google开源的grpc,这里主要介绍goctl rpc protoc的代码生成与使用。protoc是grpc的命令,作用是将proto buffer文件转化为相…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...
java高级——高阶函数、如何定义一个函数式接口类似stream流的filter
java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...
从零手写Java版本的LSM Tree (一):LSM Tree 概述
🔥 推荐一个高质量的Java LSM Tree开源项目! https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree,专为高并发写入场景设计。 核心亮点: ⚡ 极致性能:写入速度超…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
