当前位置: 首页 > news >正文

机器学习原理之 -- 支持向量机分类:由来及原理详解

        支持向量机(Support Vector Machine, SVM)是统计学习理论的一个重要成果,广泛应用于分类和回归问题。SVM以其高效的分类性能和良好的泛化能力在机器学习领域中占据重要地位。本文将详细介绍支持向量机的由来、基本原理、构建过程及其优缺点。

二、支持向量机的由来

        支持向量机的概念最早由Vladimir N. Vapnik和他的同事于20世纪60年代提出,后来在20世纪90年代得到了进一步的发展和推广。SVM的基础源自于统计学习理论中的结构风险最小化原则(Structural Risk Minimization, SRM),旨在通过优化模型复杂度和经验风险的平衡,达到最优的泛化能力。

三、支持向量机的基本原理

1. 线性可分支持向量机

        对于线性可分的数据集,支持向量机通过找到一个最佳的超平面,将不同类别的数据点分开。该超平面最大化了两类数据点之间的间隔,从而提高分类的鲁棒性和泛化能力。

(1) 超平面

        一个超平面可以表示为:

eq?%5Cmathbf%7Bw%7D%20%5Ccdot%20%5Cmathbf%7Bx%7D%20+%20b%20%3D%200

        其中,w是超平面的法向量,b是偏置项,x是数据点。

(2) 间隔

        间隔定义为超平面到最近数据点的距离。支持向量机通过最大化这个间隔来找到最优的超平面。间隔可以表示为:

eq?%5Cgamma%20%3D%20%5Cfrac%7B2%7D%7B%5C%7C%5Cmathbf%7Bw%7D%5C%7C%7D

        最大化间隔的问题可以转化为一个凸优化问题,通过拉格朗日乘子法和KKT条件进行求解。

2. 线性不可分支持向量机

        对于线性不可分的数据集,引入软间隔(Soft Margin)来允许一些数据点位于错误的一侧。软间隔支持向量机通过引入松弛变量eq?%5Cxi_i​,并最小化误分类代价来实现。

        目标函数变为:

eq?%5Cmin_%7B%5Cmathbf%7Bw%7D%2C%20b%2C%20%5Cxi%7D%20%5Cfrac%7B1%7D%7B2%7D%5C%7C%5Cmathbf%7Bw%7D%5C%7C%5E2%20+%20C%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cxi_i

        约束条件为:

eq?y_i%20%28%5Cmathbf%7Bw%7D%20%5Ccdot%20%5Cmathbf%7Bx%7D_i%20+%20b%29%20%5Cgeq%201%20-%20%5Cxi_i%2C%20%5Cquad%20%5Cxi_i%20%5Cgeq%200

        其中,C是惩罚参数,用于控制间隔和误分类之间的权衡。

3. 非线性支持向量机

        对于非线性数据,引入核函数(Kernel Function)将数据映射到高维空间,在高维空间中寻找最优超平面。常用的核函数包括线性核、多项式核、径向基函数核(RBF)和 sigmoid 核。

        核函数的定义为:

eq?K%28%5Cmathbf%7Bx%7D_i%2C%20%5Cmathbf%7Bx%7D_j%29%20%3D%20%5Cphi%28%5Cmathbf%7Bx%7D_i%29%20%5Ccdot%20%5Cphi%28%5Cmathbf%7Bx%7D_j%29

        其中,eq?%5Cphi是将数据映射到高维空间的映射函数。

四、支持向量机的优缺点

1. 优点

  • 高效的分类性能:SVM在高维空间中寻找最优超平面,能够处理复杂的分类任务。
  • 良好的泛化能力:通过结构风险最小化原则,SVM在避免过拟合的同时具有较好的泛化能力。
  • 适用于高维数据:SVM能够处理维数较高的数据,且有效避免维数灾难。

2. 缺点

  • 计算复杂度高:对于大规模数据集,SVM的训练时间和内存消耗较大。
  • 参数选择困难:核函数的选择和惩罚参数CCC的设定对模型性能影响较大,需要通过交叉验证等方法进行调参。
  • 对缺失数据敏感:SVM对缺失数据较为敏感,需要进行数据预处理。

五、支持向量机的应用

        支持向量机广泛应用于文本分类、图像识别、生物信息学、金融风控等领域。其强大的分类性能和良好的泛化能力使其成为解决复杂分类问题的重要工具。

六、结论

        支持向量机作为一种强大的分类算法,通过引入结构风险最小化原则,在高维空间中寻找最优超平面,实现了高效的分类性能和良好的泛化能力。尽管在大规模数据集和参数选择方面存在一定的挑战,但其在实际应用中依然表现出色。理解和掌握支持向量机的基本原理,有助于更好地应用这一算法解决实际问题。

 

相关文章:

机器学习原理之 -- 支持向量机分类:由来及原理详解

支持向量机(Support Vector Machine, SVM)是统计学习理论的一个重要成果,广泛应用于分类和回归问题。SVM以其高效的分类性能和良好的泛化能力在机器学习领域中占据重要地位。本文将详细介绍支持向量机的由来、基本原理、构建过程及其优缺点。…...

华为机试HJ8合并表记录

华为机试HJ8合并表记录 题目: 数据表记录包含表索引index和数值value(int范围的正整数),请对表索引相同的记录进行合并,即将相同索引的数值进行求和运算,输出按照index值升序进行输出。 想法&#xff1a…...

Leetcode 2043简易银行交易系统

题目描述 简易银行系统 尝试过 中等 相关标签 相关企业 提示 你的任务是为一个很受欢迎的银行设计一款程序,以自动化执行所有传入的交易(转账,存款和取款)。银行共有 n 个账户,编号从 1 到 n 。每个账号的初始余额存储…...

适合职场小白的待办事项管理方法和工具

刚入职场那会儿,我每天都像只无头苍蝇,忙得团团转却效率低下。待办事项像潮水般涌来,会议、报告、客户跟进……每一项都像是悬在头顶的利剑,让我焦虑不堪。我深知,管理好待办事项是职场生存的必修课,但该如…...

相机参数与图像处理技术解析

01. 相机内参和外参的含义?如果将图像放大两倍,内外参如何变化? 相机有两个最基础的数据:内参(Instrinsics)和外参(Extrinsics),内参主要描述的是相机的CCD/CMOS感光片尺寸/分辨率以及光学镜头的系数,外参主…...

Ubuntu20.04安装Prometheus监控系统

环境准备: 服务器名称内网IP公网IPPrometheus服务器192.168.0.23047.119.21.167Grafana服务器192.168.0.23147.119.22.8被监控服务器192.168.0.23247.119.22.82 更改主机名方便辨认 hostnamectl set-hostname prometheus hostnamectl set-hostname grafana hostn…...

kafka consumer客户端消费逻辑解析

kafka consumer客户端消费逻辑解析 一、主要步骤二、提交策略【步骤2代码解析】【提交策略总结】 三、拉取策略四、消费策略【代码解析】【消费策略总结】 一、主要步骤 这是kafka客户端拉取消息的入口,有4个主要部分 1、启动后的准备 consumer线程启动后&#xff…...

打印机出现多个副本无法删除

打印机出现多个副本很烦人,尤其是在打印机在局域网内被多个主机共享的时候,一旦出现新的副本,原有副本全都变成脱机状态,其他电脑连接的共享打印机是原来的副本,所以要重新设置打印机共享,很烦人。 想要删…...

FlinkSQL 开发经验分享

作者:汤包 最近做了几个实时数据开发需求,也不可避免地在使用 Flink 的过程中遇到了一些问题,比如数据倾斜导致的反压、interval join、开窗导致的水位线失效等问题,通过思考并解决这些问题,加深了我对 Flink 原理与机…...

JVM原理(十二):JVM虚拟机类加载过程

一个类型从被加载到虚拟机内存中开始,到卸载为止,它的整个生命周期将会经过 加载、验证、准备、解析、初始化、使用、卸载七个阶段。其中 验证、准备、解析三个部分统称为 连接 1. 加载 加载是整个类加载的一个过程。在加载阶段,Java虚拟机…...

Apipost接口测试工具的原理及应用详解(三)

本系列文章简介: 随着软件行业的快速发展,API(应用程序编程接口)作为不同软件组件之间通信的桥梁,其重要性日益凸显。API的质量直接关系到软件系统的稳定性、性能和用户体验。因此,对API进行严格的测试成为软件开发过程中不可或缺的一环。在众多API测试工具中,Apipost凭…...

unity里鼠标位置是否在物体上。

1. 使用Raycast 如果你的图片是在UI Canvas上,可以使用Raycast来检测鼠标点击是否在图片上。 using UnityEngine; using UnityEngine.EventSystems; using UnityEngine.UI; public class ImageClickChecker : MonoBehaviour { public Image targetImage; voi…...

Java知识点大纲

文章目录 第一阶段:JavaSE1、面向对象编程(基础)1)面向过程和面向对象区别2)类和对象的概述3)类的属性和方法4)创建对象内存分析5)构造方法(Construtor)及其重载6)对象类型的参数传递7)this关键字详解8)static关键字详解9)局部代码块、构造代码块和静态代码块10)pac…...

【Kafka】记录一次Kafka消费者重复消费问题

文章目录 现象业务背景排查过程Push与Pull 现象 用户反馈消费者出现消息积压,并且通过日志看,一直重复消费,且没有报错日志。 业务背景 用户的消费者是一个将文件做Embedding的任务,(由于AI技术的兴起,大…...

Android使用http加载自建服务器静态网页

最终效果如下图,成功加载了电脑端的静态网页内容,这是一个xml文件。 电脑端搭建http服务器 使用“Apache Http Server”,下载地址是:https://httpd.apache.org/download.cgi。 安装启动步骤,参考:Apach…...

python解耦重构,提高程序维护性

一、重构思想 思路来源 java spring设计模式学习,强调低耦合的思想,通过解耦来提高程序的可维护性。 二、代码重构 解决方案 通过单独配置文件来控制变量的改变。 spring的话可以读取xml或者是springboot 读取application.properties 来获取变量值。…...

深入解析 Laravel 事件系统:架构、实现与应用

Laravel 的事件系统是框架中一个强大且灵活的功能,它允许开发者在应用程序中定义和使用自定义事件和监听器。这个系统基于观察者模式,使得代码解耦和可维护性大大提高。在本文中,我们将深入探讨 Laravel 事件系统的工作原理、如何实现自定义事…...

视频怎么制作gif动态图片?GIF制作方法分享

视频怎么制作gif动态图片?视频制作GIF动态图片,不仅保留了视频的生动瞬间,还赋予了图像循环播放的魔力。这一技能不仅让创意表达更加丰富多彩,还极大地提升了视觉传播的效率和趣味性。在快节奏的数字时代,GIF动图以其小…...

js 使用 lodash-es 检测某个值是否是函数

import { isFunction } from lodash-eslet isA isFunction(() > {}) console.log(isA) //true https://www.lodashjs.com/docs/lodash.isFunction#_isfunctionvalue https://lodash.com/docs/4.17.15#isFunction 人工智能学习网站 https://chat.xutongbao.top...

[go-zero] goctl 生成api和rpc

文章目录 1.goctl 概述2.go-zero 需要安装的组件3.生成 api4.生成 rpc 1.goctl 概述 goctl支持多种rpc,较为流行的是google开源的grpc,这里主要介绍goctl rpc protoc的代码生成与使用。protoc是grpc的命令,作用是将proto buffer文件转化为相…...

docker -run hello-world超时

主要原因就是尝试拉取库的时候没有从阿里云镜像里拉&#xff0c;所以设置一下就好了 这里使用的是ubuntu系统&#xff08;命令行下逐行敲就行了&#xff09; sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": [&quo…...

拓扑学习系列(8)黎曼度量曲面与高斯曲率

黎曼度量 黎曼度量是黎曼几何中的一个重要概念&#xff0c;它用来描述流形上的切向量之间的长度和角度。黎曼度量赋予了流形一个内积结构&#xff0c;使得我们可以定义切向量的长度、夹角和内积&#xff0c;从而引入了度量空间的概念。让我更详细地解释一下黎曼度量&#xff1…...

汽车IVI中控开发入门及进阶(三十四):i.MX linux BSP

开发板: 汽车IVI中控开发入门及进阶(三十三):i.MX linux开发之开发板-CSDN博客 linux 开发项目: 汽车IVI中控开发入门及进阶(三十二):i.MX linux开发之Yocto-CSDN博客 前言: 有了开发板,linux BSP编译项目yocto,接下来就可以在i.MX平台上构建和安装i.MX Linux …...

【Python机器学习】算法链与管道——构建管道

目录 1、首先&#xff0c;我们构建一个由步骤列表组成的管道对象。 2、向任何其他scikit-learn估计器一样来拟合这个管道 3、调用pipe.score 我们来看下如何使用Pipeline类来表示在使用MinMaxScaler缩放数据后&#xff0c;再训练一个SVM的工作流程&#xff08;暂时不用网格搜…...

Postman 高级用法学习

Postman 高级用法 Postman 是一款强大的 API 调试和开发工具&#xff0c;广泛应用于 API 开发、测试、调试和自动化流程中。除了基本的 API 请求发送和响应查看功能&#xff0c;Postman 还提供了许多高级功能。以下是详细的讲解&#xff0c;包括具体示例和操作步骤。 一、环境…...

从新手到高手:Scala函数式编程完全指南,Scala 访问修饰符(6)

1、Scala 访问修饰符 Scala 访问修饰符基本和Java的一样&#xff0c;分别有&#xff1a;private&#xff0c;protected&#xff0c;public。 如果没有指定访问修饰符&#xff0c;默认情况下&#xff0c;Scala 对象的访问级别都是 public。 Scala 中的 private 限定符&#xff…...

IDEA 一键部署Docker

以部署示例服务&#xff08;sevnce-demo&#xff09;为例。 配置服务器 地址、账号、密码根据实际情况填写 配置镜像仓库 地址、账号、密码根据实际情况填写 编写Dockerfile 在sevnce-demo根目录下右键&#xff0c;选择创建Dockerfile。 # 基础镜像 FROM sevnce-registry.c…...

linux centos tomcat 不安全的HTTP请求方法

1、页面查看 2、在linux主机可使用此命令查看 curl -v -X OPTIONS http://实际地址 3、进入tomcat conf目录vim web.xml&#xff0c;增加以下内容 <!-- close insecure http methods --> <security-constraint><web-resource-collection><web-resource…...

深入Django(六)

Django的表单系统 引言 在前五天的教程中&#xff0c;我们介绍了Django的基本概念、模型、视图、模板和URL路由。今天&#xff0c;我们将讨论Django的表单系统&#xff0c;它是处理用户输入、验证数据和与模型交互的重要组件。 Django表单系统概述 Django的表单系统提供了一…...

PHP房产小程序微信小程序系统源码

&#x1f3e0;—— 购房租房&#xff0c;一“指”搞定&#x1f3e1; &#x1f50d;【开篇&#xff1a;房产新视界&#xff0c;尽在掌握】 在这个信息爆炸的时代&#xff0c;找房子不再是一场漫长的奔波。有了“房产微信小程序”&#xff0c;无论是购房还是租房&#xff0c;都…...