当前位置: 首页 > news >正文

DPO算法推导

DPO

  • 核心思想:直接使用偏好数据进行策略优化,省去 reward 模型策略优化。

  • 技术背景知识:

    首先给定prompt x,生成两个答案 ( y 1 , y 2 ) Π S F T ( y ∣ x ) (y_1,y_2)~\Pi^{SFT}(y|x) (y1,y2) ΠSFT(yx) ,并通过人工标注对比 y 1 , y 2 y_1,y_2 y1,y2 ,获得偏好结果(preference) y w ≻ y l ∣ x y_w\succ y_l|x ywylx,其中 w w w l l l表示winlose

    引入奖励模型 r r r , y 1 > y 2 y_1 > y_2 y1>y2 的概率可以表示为
    p ( y 1 > y 2 ) = r ∗ ( x , y 1 ) r ∗ ( x , y 1 ) + r ∗ ( x , y 2 ) p(y_1 > y_2) = \frac{r^*(x,y_1)}{r^*(x,y_1)+ r^*(x,y_2)} p(y1>y2)=r(x,y1)+r(x,y2)r(x,y1)
    为使得奖励函数均为正数,引入Bradley-Terry 模型。

    • Bradley-Terry
      p ∗ ( y w ≻ y l ∣ x ) = e x p ( r ∗ ( x , y 1 ) ) e x p ( r ∗ ( x , y 1 ) ) + e x p ( r ∗ ( x , y 2 ) ) p^{*}(y_w\succ y_l|x) = \frac{exp(r^*(x,y_1))}{exp(r^*(x,y_1))+ exp(r^*(x,y_2))} p(ywylx)=exp(r(x,y1))+exp(r(x,y2))exp(r(x,y1))
      交叉熵:

      a x = e x p ( r ∗ ( x , y 1 ) ) a_x = exp(r^*(x,y_1)) ax=exp(r(x,y1)), a y = e x p ( r ∗ ( x , y 2 ) ) a_y = exp(r^*(x,y_2)) ay=exp(r(x,y2))
      L o s s = − E ( a x , a y ) ∼ D [ l n a x a x + a y ] = − E ( x , y w , y l ) ∼ D [ l n e x p ( r ∗ ( x , y w ) ) e x p ( r ∗ ( x , y w ) ) + e x p ( r ∗ ( x , y l ) ) ] = − E ( x , y w , y l ) ∼ D [ l n 1 1 + e x p ( r ∗ ( x , y l ) − r ∗ ( x , y w ) ) ] = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) ] Loss = -E_{(a_x,a_y)\sim D}[ln\frac{a_x}{a_x+a_y}] \\ = - E_{(x,y_w,y_l)\sim D}[ln\frac{exp(r^*(x,y_w))}{exp(r^*(x,y_w))+exp(r^*(x,y_l))}] \\ = - E_{(x,y_w,y_l)\sim D}[ln\frac{1}{1+exp(r^*(x,y_l)-r^*(x,y_w))}] \\ = - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l))] \\ Loss=E(ax,ay)D[lnax+ayax]=E(x,yw,yl)D[lnexp(r(x,yw))+exp(r(x,yl))exp(r(x,yw))]=E(x,yw,yl)D[ln1+exp(r(x,yl)r(x,yw))1]=E(x,yw,yl)D[l(r(x,yw)r(x,yl))]

    • KL 散度:
      K L ( P ∣ ∣ Q ) = ∑ x ∈ X P ( X ) l o g ( P ( X ) Q ( X ) ) KL(P||Q) = \sum_{x\in X}P(X)log(\frac{P(X)}{Q(X)}) KL(P∣∣Q)=xXP(X)log(Q(X)P(X))
      P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 分别是数据真实分布和模型预测分布。

  • DPO 目标函数:获取更多的奖励,并尽可能保证与基准模型一致。
    m a x π E x ∈ X , y ∈ π [ r ( x , y ) ] − β ⋅ D K L [ π ( y ∣ x ) ∣ ∣ π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ r ( x , y ) ] − E x ∈ X , y ∈ π [ β ⋅ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ r ( x , y ) − β ⋅ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ] = m a x π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) − 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) − l o g e x p ( 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) − l o g Z ( x ) ] \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y)] - \beta·\mathbb{D}_{KL}[\pi(y|x) || \pi_{ref}(y|x)] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y)] - E_{x\in X, y \in \pi}[\beta·log \frac{\pi(y|x)}{\pi_{ref}(y|x)}] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[r(x,y) - \beta·log \frac{\pi(y|x)}{\pi_{ref}(y|x)}] \\ = \underset{\pi}{max} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)}- \frac{1}{\beta}r(x,y))] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)}- log \ \ exp(\frac{1}{\beta}r(x,y))] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} - log \ \ Z(x) ] \\ πmaxExX,yπ[r(x,y)]βDKL[π(yx)∣∣πref(yx)]=πmaxExX,yπ[r(x,y)]ExX,yπ[βlogπref(yx)π(yx)]=πmaxExX,yπ[r(x,y)βlogπref(yx)π(yx)]=πmaxExX,yπ[logπref(yx)π(yx)β1r(x,y))]=πminExX,yπ[logπref(yx)π(yx)log  exp(β1r(x,y))]=πminExX,yπ[logπref(yx)exp(β1r(x,y))π(yx)]=πminExX,yπ[logZ(x)1πref(yx)exp(β1r(x,y))π(yx)log  Z(x)]
    Z ( x ) Z(x) Z(x) 表示如下:
    Z ( x ) = ∑ y π r e f ( y ∣ x ) e x p ( 1 β r ( x , y ) ) Z(x) = \underset{y}{\sum} \pi_{ref}(y|x) exp(\frac{1}{\beta}r(x,y) ) Z(x)=yπref(yx)exp(β1r(x,y))
    令:
    1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) = π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) ∑ y π r e f ( y ∣ x ) e x p ( 1 β r ( x , y ) ) = π ∗ ( y ∣ x ) \frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y)) = \frac{\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))}{\underset{y}{\sum} \pi_{ref}(y|x) exp(\frac{1}{\beta}r(x,y) )} \\ = \pi^*(y|x) Z(x)1πref(yx)exp(β1r(x,y))=yπref(yx)exp(β1r(x,y))πref(yx)exp(β1r(x,y))=π(yx)
    接下来继续对``dpo` 目标函数进行化简:
    m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) − l o g Z ( x ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) − l o g Z ( x ) ] \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y))} - log \ \ Z(x) ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} - log \ \ Z(x) ] \\ πminExX,yπ[logZ(x)1πref(yx)exp(β1r(x,y))π(yx)log  Z(x)]=πminExX,yπ[logπ(yx)π(yx)log  Z(x)]
    由于 Z ( x ) Z(x) Z(x) 表达式与 π \pi π 不相关,优化可以直接省去。
    m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) − l o g Z ( x ) ] = m i n π E x ∈ X , y ∈ π [ l o g π ( y ∣ x ) π ∗ ( y ∣ x ) ] = m i n π E x ∼ D [ D K L ( π ( y ∣ x ) ∣ ∣ π ∗ ( y ∣ x ) ) ] \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} - log \ \ Z(x) ] \\ = \underset{\pi}{min} E_{x\in X, y \in \pi}[log \frac{\pi(y|x)}{\pi^*(y|x)} ] \\ = \underset{\pi}{min} E_{x \sim D}[\mathbb{D}_{KL}(\pi(y|x) || \pi^*(y|x))] \\ πminExX,yπ[logπ(yx)π(yx)log  Z(x)]=πminExX,yπ[logπ(yx)π(yx)]=πminExD[DKL(π(yx)∣∣π(yx))]
    当 目标函数最小化,也就是 D K L \mathbb{D}_{KL} DKL 最小化,所满足的条件为:
    π ( y ∣ x ) = π ∗ ( y ∣ x ) = 1 Z ( x ) π r e f ( y ∣ x ) ⋅ e x p ( 1 β r ( x , y ) ) \pi(y|x) = \pi^*(y|x) = \frac{1}{Z(x)}\pi_{ref}(y|x)·exp(\frac{1}{\beta}r(x,y)) π(yx)=π(yx)=Z(x)1πref(yx)exp(β1r(x,y))
    反解奖励函数 r ( x , y ) r(x,y) r(x,y)
    r ( x , y ) = β π ( y ∣ x ) π r e f ( y ∣ x ) + β ⋅ l n Z ( x ) r(x,y) = \beta \frac{\pi(y|x)}{\pi_{ref}(y|x)} + \beta · ln \Z(x) r(x,y)=βπref(yx)π(yx)+βlnZ(x)

求解奖励函数隐式表达后,带入Bradley-Terry 交叉熵函数:
L o s s = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) ] = − E ( x , y w , y l ) ∼ D [ l n σ ( β l o g π ( y w ∣ x ) π r e f ( y w ∣ x ) − β l o g π ( y l ∣ x ) π r e f ( y l ∣ x ) ) ] Loss = - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l))] \\ =- E_{(x,y_w,y_l)\sim D}[ln \sigma(\beta log\frac{\pi(y_w|x)}{\pi_{ref}(y_w|x)} - \beta log \frac{\pi(y_l|x)}{\pi_{ref}(y_l|x)})] Loss=E(x,yw,yl)D[l(r(x,yw)r(x,yl))]=E(x,yw,yl)D[l(βlogπref(ywx)π(ywx)βlogπref(ylx)π(ylx))]
到此,整个数学部分已推导完毕,不得不说句牛逼plus。

  • 梯度表征:

    将上述损失进行梯度求导
    ∇ θ L o s s ( π θ ; π r e f ) = − E ( x , y w , y l ) ∼ D [ β σ ( β l o g π ( y w ∣ x ) π r e f ( y w ∣ x ) − β l o g π ( y l ∣ x ) π r e f ( y l ∣ x ) ) [ ∇ θ l o g π ( y w ∣ x ) − ∇ θ l o g π ( y l ∣ x ) ] ] \nabla_\theta Loss(\pi_{\theta};\pi_{ref}) = - E_{(x,y_w,y_l)\sim D}[\beta \sigma(\beta log\frac{\pi(y_w|x)}{\pi_{ref}(y_w|x)} - \beta log \frac{\pi(y_l|x)}{\pi_{ref}(y_l|x)}) [\nabla_{\theta}log \pi(y_w|x) - \nabla_{\theta}log \pi(y_l|x) ]] θLoss(πθ;πref)=E(x,yw,yl)D[βσ(βlogπref(ywx)π(ywx)βlogπref(ylx)π(ylx))[θlogπ(ywx)θlogπ(ylx)]]
    再令:
    r ^ ( x , y ) = β π θ ( y ∣ x ) π r e f ( y ∣ x ) \hat{r}(x,y) = \beta \frac{\pi_{\theta}(y|x)}{\pi_{ref}(y|x)} r^(x,y)=βπref(yx)πθ(yx)
    最终形式:
    ∇ θ L o s s ( π θ ; π r e f ) = − β E ( x , y w , y l ) ∼ D [ σ ( r ^ ∗ ( x , y w ) − r ^ ∗ ( x , y l ) ) ⏟ h i g h e r w e i g h t w h e n r e w a r d e s t i m a t e i s w r o n g [ ∇ θ l o g π ( y w ∣ x ) ⏟ i n c r e a s e l i k e l i h o o d o f y w − ∇ θ l o g π ( y l ∣ x ) ⏟ d e c r e a s e l i k e l i h o o d o f y l ] ] \nabla_\theta Loss(\pi_{\theta};\pi_{ref}) = -\beta E_{(x,y_w,y_l)\sim D}[\underbrace{\sigma(\hat{r}^*(x,y_w) -\hat{r}^*(x,y_l))}_{higher\ weight\ when\ reward\ estimate\ is\ wrong} [\underbrace{\nabla_{\theta}log \pi(y_w|x)}_{\ \ \ \ \ \ \ \ \ increase \ likelihood\ of\ y_w} - \underbrace{\nabla_{\theta}log \pi(y_l|x)}_{decrease \ likelihood \ of \ y_l} ]] θLoss(πθ;πref)=βE(x,yw,yl)D[higher weight when reward estimate is wrong σ(r^(x,yw)r^(x,yl))[         increase likelihood of yw θlogπ(ywx)decrease likelihood of yl θlogπ(ylx)]]

  • 改进方法ODPO

    dpo缺陷主要是:采用Bradley–Terry model只给出了一个response比另一个response好的概率,而没有告诉我们好的程度。

odpo 核心思想: 把这个好的程度的差距信息引入到偏好的建模里,应该能带来收益,及在dpo损失里添加margin , 这相当于要求偏好回应的评估分数要比非偏好回应的评估分数大,且要大offset值这么多。目的是:加大对靠得比较近的数据对的惩罚力度。
L o s s o d p o = − E ( x , y w , y l ) ∼ D [ l n σ ( r ∗ ( x , y w ) − r ∗ ( x , y l ) ) − δ r ] δ r = α l o g ( r ( y w ) − r ( y l ) ) Loss^{odpo}= - E_{(x,y_w,y_l)\sim D}[ln \sigma(r^*(x,y_w) -r^*(x,y_l)) - \delta_r] \\ \delta_r = \alpha \ log(r(y_w)- r(y_l)) Lossodpo=E(x,yw,yl)D[l(r(x,yw)r(x,yl))δr]δr=α log(r(yw)r(yl))

  • 相似改进方法:

    IPO KTO 都是不需要奖励模型的;

相关文章:

DPO算法推导

DPO 核心思想:直接使用偏好数据进行策略优化,省去 reward 模型策略优化。 技术背景知识: 首先给定prompt x,生成两个答案 ( y 1 , y 2 ) Π S F T ( y ∣ x ) (y_1,y_2)~\Pi^{SFT}(y|x) (y1​,y2​) ΠSFT(y∣x) ,并通…...

Qt源码分析:窗体绘制与响应

作为一套开源跨平台的UI代码库,窗体绘制与响应自然是最为基本的功能。在前面的博文中,已就Qt中的元对象系统(反射机制)、事件循环等基础内容进行了分析,并捎带阐述了窗体响应相关的内容。因此,本文着重分析Qt中窗体绘制相关的内容…...

docker 安装 禅道

docker pull hub.zentao.net/app/zentao:20.1.1 sudo docker network create --subnet172.172.172.0/24 zentaonet 使用 8087端口号访问 使用禅道mysql 映射到3307 sudo docker run \ --name zentao2 \ -p 8087:80 \ -p 3307:3306 \ --networkzentaonet \ --ip 172.172.172.…...

【简要说说】make 增量编译的原理

make 增量编译的原理 make是一个工具,它可以根据依赖关系和时间戳来自动执行编译命令。 当您修改了源代码文件后,make会检查它们的修改时间是否比目标文件(如可执行文件或目标文件)新,如果是,就会重新编译…...

DETRs Beat YOLOs on Real-time Object Detection论文翻译

cvpr 2024 论文名称 DETRs在实时目标检测上击败YOLO 地址 https://arxiv.longhoe.net/abs/2304.08069 代码 https://github.com/lyuwenyu/RT-DETR 目录 摘要 1介绍 2.相关工作 2.1实时目标探测器 2.2.端到端物体探测器 3.检测器的端到端速度 3.1.NMS分析 3.2.端到端速度…...

SpringBoot 多数据源配置

目录 一. 引入maven依赖包 二. 配置yml 三、创建 xml 分组文件 四、切换数据源 一. 引入maven依赖包 <dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot-starter</artifactId><version>3.6.1&…...

RK3568驱动指南|第十六篇 SPI-第192章 mcp2515驱动编写:完善write和read函数

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…...

#BI建模与数仓建模有什么区别?指标体系由谁来搭建?

问题1&#xff1a; 指标体系是我们数仓来搭建还是分析师来做&#xff0c;如何去推动&#xff1f; 问题2&#xff1a;BI建模与数仓建模有什么区别&#xff1f; 指标体系要想做好&#xff0c;其实是分两块内容的&#xff0c;一块是顶层设计阶段&#xff0c;业务指标体系的搭建&am…...

如何用Python实现三维可视化?

Python拥有很多优秀的三维图像可视化工具&#xff0c;主要基于图形处理库WebGL、OpenGL或者VTK。 这些工具主要用于大规模空间标量数据、向量场数据、张量场数据等等的可视化&#xff0c;实际运用场景主要在海洋大气建模、飞机模型设计、桥梁设计、电磁场分析等等。 本文简单…...

chrome.storage.local.set 未生效

之前chrome.storage.local.set 和 get 一直不起作用 使用以下代码运行成功。 chrome.storage.local.set({ pageState: "main" }).then(() > {console.log("Value is set");});chrome.storage.local.get(["pageState"]).then((result) > …...

泛微开发修炼之旅--30 linux-Ecology服务器运维脚本

文章链接&#xff1a;30 linux-ecology服务器运维脚本...

LeetCode 全排列

思路&#xff1a;这是一道暴力搜索问题&#xff0c;我们需要列出答案的所有可能组合。 题目给我们一个数组&#xff0c;我们很容易想到的做法是将数组中的元素进行排列&#xff0c;如何区分已选中和未选中的元素&#xff0c;容易想到的是建立一个标记数组&#xff0c;已经选中的…...

python实现支付宝异步回调验签

说明 python实现支付宝异步回调验签&#xff0c;示例中使用Django框架。 此方案使用了支付宝的pythonSDK&#xff0c;请一定装最新版本的&#xff0c;支付宝官网文档不知道多久没更新了&#xff0c;之前的版本pip安装会报一些c库不存在的错误&#xff1b; pip install alipay-…...

注意!Vue.js 或 Nuxt.js 中请停止使用.value

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 当您在代码中使用.value时,必须每次都检查变量是否存在并且是引用。 这可能很麻烦,因为在运行时使用.value可能会导致错误。然而,有一个简单的解决方法,即使用unref()而不是.value。 unref()会检查变量是否是引用,并自…...

Java:JDK、JRE和JVM 三者关系

文章目录 一、JDK是什么二、JRE是什么三、JDK、JRE和JVM的关系 一、JDK是什么 JDK&#xff08;Java Development Kit&#xff09;&#xff1a;Java开发工具包 JRE&#xff1a;Java运行时环境开发工具&#xff1a;javac&#xff08;编译工具&#xff09;、java&#xff08;运行…...

Radio专业术语笔记

在收音机的 RDS (Radio Data System) 功能中&#xff0c;CT 代表 “Clock Time”。RDS 是一种数字广播标准&#xff0c;用于在调频广播中传输辅助数据&#xff0c;如电台名称、节目类型、交通信息等。CT 功能是其中的一部分&#xff0c;用于同步和显示广播电台发送的当前时间。…...

cocosCreator找出未用到的图片

最近整理项目的时候发现有些资源文件夹有点轮乱(一些历史原因导致的),而且有很多图片都是没用了的,但是没有被删除掉,还一直放在项目中,导致项目的资源文件夹比较大,而且还冗余。于是今天想着整理一下。 公开免费链接 找出未使用的图片 有好几种方法可以找出未使用的图片…...

一览 Anoma 上的有趣应用概念

撰文&#xff1a;Tia&#xff0c;Techub News 本文来源香港Web3媒体&#xff1a;Techub News Anoma 的目标是为应用提供通用的意图机器接口&#xff0c;这意味着使用 Anoma&#xff0c;开发人员可以根据意图和分布式意图机编写应用&#xff0c;而不是根据事务和特定状态机进行…...

Spring Boot集成fastjson2快速入门Demo

1.什么是fastjson2&#xff1f; fastjson2是阿里巴巴开发的一个高性能的Java JSON处理库&#xff0c;它支持将Java对象转换成JSON格式&#xff0c;同时也支持将JSON字符串解析成Java对象。本文将介绍fastjson2的常见用法&#xff0c;包括JSON对象、JSON数组的创建、取值、遍历…...

Three.js机器人与星系动态场景(二):强化三维空间认识

在上篇博客中介绍了如何快速利用react搭建three.js平台&#xff0c;并实现3D模型的可视化。本文将在上一篇的基础上强化坐标系的概念。引入AxesHelper辅助工具及文本绘制工具&#xff0c;带你快速理解camer、坐标系、position、可视区域。 Three.js机器人与星系动态场景&#x…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...