当前位置: 首页 > news >正文

数据识别概述

数据识别场景

数据识别确实可以分为两种主要类型:直接识别和间接识别(或称为从文本中发现)。下面我将详细解释这两种类型:

  1. 直接识别

    • 定义:直接识别是指直接判断某个数据是否符合特定的标准或条件。
    • 应用场景:例如,判断一个数字是否是偶数,或者判断一个字符串是否是有效的电子邮件地址。
    • 方法:通常使用规则或算法直接对数据进行检查,如使用正则表达式来验证电子邮件地址的格式。
  2. 间接识别(从文本中发现)

    • 定义:间接识别是指从一段文本中提取出符合特定条件的数据。
    • 应用场景:例如,从一篇新闻文章中提取出所有的日期,或者从社交媒体帖子中识别出所有的地理位置信息。
    • 方法:通常涉及自然语言处理(NLP)技术,如命名实体识别(NER)、关键词提取等。这些技术可以帮助从文本中识别和提取出特定的数据类型。

这两种方法在实际应用中常常结合使用,以提高数据识别的准确性和效率。例如,在处理大量文本数据时,可以先使用间接识别方法提取出潜在的相关数据,然后再使用直接识别方法对这些数据进行进一步的验证和分类。


直接识别和间接识别在代码处理方式上有所不同,以python代码识别email为例:

对于直接识别,正则表达式可以用 ^$ 限定正则的边界,保证正则表达式是完全匹配而不是匹配一部分,同时判断逻辑使用: re.match(PATTERN, TARGET) is not None

import redef is_valid_email(email):pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'return re.match(pattern, email) is not None# 示例
email = "example@example.com"
print(is_valid_email(email))  # 输出: True

对于间接识别,正则表达式不能使用^$,同时判断逻辑使用re.findall(PATTERN, TARGET) 返回所有匹配的结果

import redef extract_emails(text):pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'return re.findall(pattern, text)# 示例
text = "Contact us at example@example.com or support@example.com"
print(extract_emails(text))  # 输出: ['example@example.com', 'support@example.com']

奇技淫巧

1. 限定识别对象的边界

例如,我要查找一个6位数号码,而实际数据中有超过6位数的号码,如果处理不当,会把长串数字中的6为子串提取出来,这显然是不对的。

def extract_bank_cards(text):pattern = '\d{6}'return re.findall(pattern, text)# 示例
text = "Bank cards: 123456, 1234567890123456, 1234567890123457"
print(extract_bank_cards(text))  # 输出: ['123456', '123456', '789012', '123456', '789012']

如何避免呢,使用正则的负向断言

这个正则表达式 (?<!\d)\d{6}(?!\d) 的含义是匹配一个六位数字,并且这个六位数字的前后都不能紧跟着其他数字。

让我们分解这个正则表达式:

  1. (?<!\d) 是一个负向前瞻断言(negative lookbehind assertion),表示在当前位置之前不能有数字。
  2. \d{6} 匹配六个连续的数字。
  3. (?!\d) 是一个负向后瞻断言(negative lookahead assertion),表示在当前位置之后不能有数字。

假设我们有以下文本:

123456 7890123 1234567 123456

使用正则表达式 (?<!\d)\d{6}(?!\d) 进行匹配:

import retext = "123456 7890123 1234567 123456"
pattern = r'(?<!\d)\d{6}(?!\d)'
matches = re.findall(pattern, text)
print(matches)  # 输出: ['123456', '123456']

在这个例子中,正则表达式匹配了两个 “123456”,因为它们的前后都没有紧跟着其他数字。而 “7890123” 和 “1234567” 没有被匹配,因为它们的前后都有其他数字。

注意:

  • 负向前瞻和负向后瞻断言不消耗字符,它们只检查特定条件是否满足。
  • 这个正则表达式适用于匹配独立的六位数字,而不包括其他数字。

通过使用这种正则表达式,可以精确地匹配特定格式的数字,避免匹配到不符合条件的数字序列。

2. 非捕获组

当写了一个非常复杂的正则表达式,里面用括号定义了很多捕获组(capturing group),直接使用findall可能捕获返回期望的结果。

import redef extract_url(text):pattern = 'https?://([\da-zA-Z_\.]+)(:\d+)?((/[a-zA-Z\d\.]+)+)?'return re.findall(pattern, text)# 示例
text = "url地址为:http://www.baidu.com:9090/hello/kugou"
print(extract_url(text))  # 输出: [('www.baidu.com', ':9090', '/hello/kugou', '/kugou')]

此时你需要将正则中的捕获组改成非捕获组,即把(...) 改写成 (?:...)

import redef extract_url(text):pattern = r'https?://(?:[\da-zA-Z_\.]+)(?::\d+)?(?:(?:/[a-zA-Z\d\.]+)+)?'return re.findall(pattern, text)# 示例
text = "url地址为:http://www.baidu.com:9090/hello/kugou"
print(extract_url(text))  # 输出: ['http://www.baidu.com:9090/hello/kugou']

相关文章:

数据识别概述

数据识别场景 数据识别确实可以分为两种主要类型&#xff1a;直接识别和间接识别&#xff08;或称为从文本中发现&#xff09;。下面我将详细解释这两种类型&#xff1a; 直接识别&#xff1a; 定义&#xff1a;直接识别是指直接判断某个数据是否符合特定的标准或条件。应用场…...

pytorch统计学分布

1、pytorch统计学函数 import torcha torch.rand(2,2) print(a) print(torch.sum(a, dim0)) print(torch.mean(a, dim0)) print(torch.prod(a, dim0))print(torch.argmax(a, dim0)) print(torch.argmin(a, dim0)) print(torch.std(a)) print(torch.var(a)) print(torch.median…...

【网络安全学习】漏洞利用:BurpSuite的使用-03-枚举攻击案例

如何使用BurpSuite进行枚举攻击 1.靶场选择 BurpSuite官方也是有渗透的教学与靶场的&#xff0c;这次就使用BurpSuite的靶场进行练习。 靶场地址&#xff1a;https://portswigger.net/web-security 登录后如下图所示&#xff0c;选择**【VIEW ALL PATHS】**&#xff1a; 找…...

redis 消息订阅命令

在 Redis 中&#xff0c;消息订阅和发布是一种用于实现消息传递的机制。主要命令包括 SUBSCRIBE、UNSUBSCRIBE、PUBLISH 和 PSUBSCRIBE 等。下面是如何使用这些命令的详细说明和示例。 1. SUBSCRIBE 命令 SUBSCRIBE 命令用于订阅一个或多个频道&#xff0c;以接收这些频道发布…...

springboot接口防抖【防重复提交】

什么是防抖 所谓防抖&#xff0c;一是防用户手抖&#xff0c;二是防网络抖动。在Web系统中&#xff0c;表单提交是一个非常常见的功能&#xff0c;如果不加控制&#xff0c;容易因为用户的误操作或网络延迟导致同一请求被发送多次&#xff0c;进而生成重复的数据记录。要针对用…...

每日一题——Python实现PAT乙级1026 程序运行时间(举一反三+思想解读+逐步优化)五千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 代码结构和逻辑 时间复杂度 空间复杂度 代码优化建议 总结 我要更强 …...

还在Excel中管理您的持续改进项目吗?

对于大多数公司来说&#xff0c;Microsoft Excel是一种可靠的资源&#xff0c;它确实提供了极高的价值。然而&#xff0c;当它被用来跟踪持续改进项目时&#xff0c;它的价值就减少了。浪费时间从不同内部系统的不同报告中收集数据&#xff0c;会占用推动重要变革的时间。让我们…...

CentOS 7 内存占用过大导致 OOM Killer 杀掉了 Java 进程

说明 Linux进程被杀掉&#xff08;OOM killer&#xff09;&#xff0c;查看系统日志 oom killer 详解 测试服务器, 有一个 Java 应用, 其进程偶尔会消失掉, 已排除人为杀死的可能 该服务器内存常年处于快被占满的状态, 怀疑是内存原因, 导致服务器主动杀死了该应用的 Java 进程…...

在postgrel中使用hints

在 PostgreSQL 中&#xff0c;可以使用查询提示&#xff08;Query Hints&#xff09;来影响查询优化器的行为&#xff0c;但需要注意的是&#xff0c;PostgreSQL 并不像一些商业数据库那样有丰富的提示语法&#xff0c;而是提供了一些基本的方式来引导优化器。 使用查询提示的…...

OceanBase Meetup北京站|跨行业应用场景中的一体化分布式数据库:AI赋能下的探索与实践

随着业务规模的不断扩张和数据处理需求的日益复杂化&#xff0c;传统数据库架构逐渐暴露出业务稳定性波动、扩展性受限、处理效率降低以及运营成本高等一系列问题。众多行业及其业务场景纷纷踏上了数据库现代化升级之路。 为应对这些挑战&#xff0c;7月6日&#xff0c;OceanB…...

Spring Boot:轻松设置全局异常处理

Spring Boot&#xff1a;轻松设置全局异常处理 在软件开发中&#xff0c;异常处理是一项至关重要的任务。对于使用Spring Boot的开发者来说&#xff0c;设置全局异常处理不仅可以提高代码的整洁度&#xff0c;还可以提升用户体验。本文将详细介绍如何在Spring Boot中轻松设置全…...

Omni3D目标检测

Omni3D是一个针对现实场景中的3D目标检测而构建的大型基准和模型体系。该项目旨在推动从单一图像中识别3D场景和物体的能力&#xff0c;这对于计算机视觉领域而言是一个长期的研究目标&#xff0c;并且在机器人、增强现实&#xff08;AR&#xff09;、虚拟现实&#xff08;VR&a…...

前端三件套开发模版——产品介绍页面

今天有空&#xff0c;使用前端三件套html、css、js制作了一个非常简单的产品制作页面&#xff0c;与大家分享&#xff0c;希望可以满足大家应急的需求。本页面可以对产品进行“抢购”、对产品进行介绍&#xff0c;同时可以安排一张产品的高清大图&#xff0c;我也加入了页面的背…...

Android Bitmap 和Drawable的区别

Bitmap 和 Drawable 是 Android 图形绘制的两种常用方式&#xff0c;它们有各自的特点和使用场景。下面将详细解释它们之间的区别&#xff0c;并通过示例代码说明如何使用它们。 Bitmap 解释 Bitmap 是一种用于存储图像像素数据的类&#xff0c;通常用于图像处理和操作。Bit…...

Linux和windows网络配置文件的修改

Linux和windows网络配置文件的修改 网络配置文件是计算机网络管理中至关重要的一部分。正确配置网络文件可以确保计算机与网络设备之间的通信顺畅&#xff0c;避免网络故障。本文将详细介绍网络配置文件的修改方法&#xff0c;包括常见命令、使用方法举例&#xff0c;以及一些…...

【.NET全栈】第16章 Web开发

文章目录 前言16.1 HTML概述16.1.1 HTML的基本概念16.1.2 HTML语言的基本元素16.1.3 格式设置16.1.4 超级链接16.1.5 图像16.1.6 表格16.1.7 框架16.1.8 表单 16.2 ASP.NET Web Forms的组织16.2.1 认识ASP.NET16.2.2 Web Forms的组织 16.3 Web服务器控件16.3.1 使用Label和Text…...

检测水管缺水的好帮手-管道光电液位传感器

管道光电液位传感器是现代清水管道管理中的重要技术创新&#xff0c;不仅提高了检测液位的精确度&#xff0c;还解决了传统机械式和电容式传感器存在的诸多问题&#xff0c;成为检测管道缺水的可靠利器。 该传感器采用先进的光学感应原理&#xff0c;利用红外光学组件通过精密…...

渗透测试流程基本八个步骤

渗透测试遵循软件测试的基本流程&#xff0c;但由于其测试过程与目标的特殊性&#xff0c;在具体实现步骤上渗透测试与常见软件测试并不相同。渗透测试流程主要包括8个步骤&#xff0c;如下图所示&#xff1a; 下面结合上图介绍每一个步骤所要完成的任务。 (1 )明确目标 当测…...

2024年移动手游趋势:休闲类手游收入逆势增长,欧美玩家成为主力

移动手游广告情报平台Sensor Tower近期发布的报告显示&#xff0c;从宏观数据来看&#xff0c;尽管2023年对于移动游戏市场来说是艰难的一年&#xff0c;无论是总下载量亦或是总收入都较去年有所下降&#xff0c;尤其是Google Play。但在总体下降的大趋势下&#xff0c;休闲游戏…...

npm 淘宝镜像证书过期,错误信息 Could not retrieve https://npm.taobao.org/mirrors/node/latest

更换 npm 证书 问题描述报错原因更换步骤1 找到 nvm 安装目录2 发现证书过期3 更换新地址4 保存后&#xff0c;重新安装成功 问题描述 在使用 nvm 安装新版本时&#xff0c;未成功&#xff0c;出现报错&#xff1a; Could not retrieve https://npm.taobao.org/mirrors/node/l…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...