当前位置: 首页 > news >正文

Omni3D目标检测

Omni3D是一个针对现实场景中的3D目标检测而构建的大型基准和模型体系。该项目旨在推动从单一图像中识别3D场景和物体的能力,这对于计算机视觉领域而言是一个长期的研究目标,并且在机器人、增强现实(AR)、虚拟现实(VR)以及其他需要精确定位和理解3D环境中物体的应用中尤为重要。

根据场景分为室内、室外、室内和室外统一模型:

关键特点:

  1. 综合性基准:Omni3D提供了一个广泛的基准测试集,覆盖了多种环境条件和场景类型,包括但不限于室内、室外、城市、乡村等,这有助于评估和比较不同3D目标检测算法的性能。

  2. 多样化数据:数据集中包含了丰富的标注信息,如3D边界框、类别标签、尺寸和姿态信息,使得研究人员能够在真实复杂场景下训练和测试他们的算法。

  1. 模型与算法:除了数据集,Omni3D可能还伴随着一些先进的3D目标检测模型,这些模型利用深度学习技术,在统一的框架下展示最新的研究成果。例如,提及的“UniMODE”就是一个试图统一室内和室外单目3D目标检测的模型,它在Omni3D基准上展示了先进水平的性能。

  2. 促进研究与应用:通过提供这样一套标准化的工具和资源,Omni3D促进了3D视觉领域的研究交流,帮助研究者们快速迭代和优化算法,同时也为实际应用提供了可行的技术参考。

应用前景:

  • 自动驾驶汽车:准确检测和识别道路上的障碍物对于自动驾驶安全至关重要。

  • 无人机导航与监控:在执行搜索救援或环境监测任务时,无人机需要理解其周围环境的3D结构。

  • AR/VR内容创建:为了提供更加沉浸式的体验,AR/VR应用需要实时感知并理解用户周围的3D空间。

  • 机器人操作与物流:在仓库自动化或家庭服务机器人场景中,3D目标检测可以提高物品抓取、搬运的精度和效率。

综上所述,Omni3D作为一个全面的3D目标检测平台,不仅推动了技术进步,也为跨领域的实际应用铺平了道路。

安装:

# setup new evironment
conda create -n cubercnn python=3.8
source activate cubercnn# main dependencies
conda install -c fvcore -c iopath -c conda-forge -c pytorch3d -c pytorch fvcore iopath pytorch3d pytorch=1.8 torchvision=0.9.1 cudatoolkit=10.1# OpenCV, COCO, detectron2
pip install cython opencv-python
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html# other dependencies
conda install -c conda-forge scipy seaborn

运行:

## for outdoor 
python demo/demo.py \
--config-file ./configs/cubercnn_DLA34_FPN_out.yaml \
--input-folder "/home/spurs/dataset/2011_10_03/2011_10_03_drive_0047_sync/image_02/data" \
--threshold 0.25 --display \
MODEL.WEIGHTS ./cubercnn_DLA34_FPN_outdoor.pth \
OUTPUT_DIR output/demo## for indoor 
python demo/demo.py \
--config-file ./configs/cubercnn_DLA34_FPN_in.yaml \
--input-folder "/home/spurs/dataset/2011_10_03/2011_10_03_drive_0047_sync/image_02/data" \
--threshold 0.25 --display \
MODEL.WEIGHTS ./cubercnn_DLA34_FPN_indoor.pth \
OUTPUT_DIR output/demo

安装:

# setup new evironment
conda create -n cubercnn python=3.8
source activate cubercnn# main dependencies
conda install -c fvcore -c iopath -c conda-forge -c pytorch3d -c pytorch fvcore iopath pytorch3d pytorch=1.8 torchvision=0.9.1 cudatoolkit=10.1# OpenCV, COCO, detectron2
pip install cython opencv-python
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html# other dependencies
conda install -c conda-forge scipy seaborn

For reference, we used and for our experiments. We expect that slight variations in versions are also compatible.cuda/10.1cudnn/v7.6.5.32\

示例:To run the Cube R-CNN demo on a folder of input images using our model trained on the full Omni3D dataset,DLA34

# Download example COCO images
sh demo/download_demo_COCO_images.sh# Run an example demo
python demo/demo.py \
--config-file cubercnn://omni3d/cubercnn_DLA34_FPN.yaml \
--input-folder "datasets/coco_examples" \
--threshold 0.25 --display \
MODEL.WEIGHTS cubercnn://omni3d/cubercnn_DLA34_FPN.pth \
OUTPUT_DIR output/demo 

We train on 48 GPUs using submitit which wraps the following training command,

python tools/train_net.py \--config-file configs/Base_Omni3D.yaml \OUTPUT_DIR output/omni3d_example_run

Note that our provided configs specify hyperparameters tuned for 48 GPUs. You could train on 1 GPU (though with no guarantee of reaching the final performance) as follows,

python tools/train_net.py \--config-file configs/Base_Omni3D.yaml --num-gpus 1 \SOLVER.IMS_PER_BATCH 4 SOLVER.BASE_LR 0.0025 \SOLVER.MAX_ITER 5568000 SOLVER.STEPS (3340800, 4454400) \SOLVER.WARMUP_ITERS 174000 TEST.EVAL_PERIOD 1392000 \VIS_PERIOD 111360 OUTPUT_DIR output/omni3d_example_run

The evaluator relies on the detectron2 MetadataCatalog for keeping track of category names and contiguous IDs. Hence, it is important to set these variables appropriately.

# (list[str]) the category names in their contiguous order
MetadataCatalog.get('omni3d_model').thing_classes = ... # (dict[int: int]) the mapping from Omni3D category IDs to the contiguous order
MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id = ...

In summary, the evaluator expects a list of image-level predictions in the format of:

{"image_id": <int> the unique image identifier from Omni3D,"K": <np.array> 3x3 intrinsics matrix for the image,"width": <int> image width,"height": <int> image height,"instances": [{"image_id":  <int> the unique image identifier from Omni3D,"category_id": <int> the contiguous category prediction IDs, which can be mapped from Omni3D's category ID's usingMetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id"bbox": [float] 2D box as [x1, y1, x2, y2] used for IoU2D,"score": <float> the confidence score for the object,"depth": <float> the depth of the center of the object,"bbox3D": list[list[float]] 8x3 corner vertices used for IoU3D,}...]
}

Please use the following BibTeX entry if you use Omni3D and/or Cube R-CNN in your research or refer to our results.

@inproceedings{brazil2023omni3d,author =       {Garrick Brazil and Abhinav Kumar and Julian Straub and Nikhila Ravi and Justin Johnson and Georgia Gkioxari},title =        {{Omni3D}: A Large Benchmark and Model for {3D} Object Detection in the Wild},booktitle =    {CVPR},address =      {Vancouver, Canada},month =        {June},year =         {2023},organization = {IEEE},
}

相关文章:

Omni3D目标检测

Omni3D是一个针对现实场景中的3D目标检测而构建的大型基准和模型体系。该项目旨在推动从单一图像中识别3D场景和物体的能力&#xff0c;这对于计算机视觉领域而言是一个长期的研究目标&#xff0c;并且在机器人、增强现实&#xff08;AR&#xff09;、虚拟现实&#xff08;VR&a…...

前端三件套开发模版——产品介绍页面

今天有空&#xff0c;使用前端三件套html、css、js制作了一个非常简单的产品制作页面&#xff0c;与大家分享&#xff0c;希望可以满足大家应急的需求。本页面可以对产品进行“抢购”、对产品进行介绍&#xff0c;同时可以安排一张产品的高清大图&#xff0c;我也加入了页面的背…...

Android Bitmap 和Drawable的区别

Bitmap 和 Drawable 是 Android 图形绘制的两种常用方式&#xff0c;它们有各自的特点和使用场景。下面将详细解释它们之间的区别&#xff0c;并通过示例代码说明如何使用它们。 Bitmap 解释 Bitmap 是一种用于存储图像像素数据的类&#xff0c;通常用于图像处理和操作。Bit…...

Linux和windows网络配置文件的修改

Linux和windows网络配置文件的修改 网络配置文件是计算机网络管理中至关重要的一部分。正确配置网络文件可以确保计算机与网络设备之间的通信顺畅&#xff0c;避免网络故障。本文将详细介绍网络配置文件的修改方法&#xff0c;包括常见命令、使用方法举例&#xff0c;以及一些…...

【.NET全栈】第16章 Web开发

文章目录 前言16.1 HTML概述16.1.1 HTML的基本概念16.1.2 HTML语言的基本元素16.1.3 格式设置16.1.4 超级链接16.1.5 图像16.1.6 表格16.1.7 框架16.1.8 表单 16.2 ASP.NET Web Forms的组织16.2.1 认识ASP.NET16.2.2 Web Forms的组织 16.3 Web服务器控件16.3.1 使用Label和Text…...

检测水管缺水的好帮手-管道光电液位传感器

管道光电液位传感器是现代清水管道管理中的重要技术创新&#xff0c;不仅提高了检测液位的精确度&#xff0c;还解决了传统机械式和电容式传感器存在的诸多问题&#xff0c;成为检测管道缺水的可靠利器。 该传感器采用先进的光学感应原理&#xff0c;利用红外光学组件通过精密…...

渗透测试流程基本八个步骤

渗透测试遵循软件测试的基本流程&#xff0c;但由于其测试过程与目标的特殊性&#xff0c;在具体实现步骤上渗透测试与常见软件测试并不相同。渗透测试流程主要包括8个步骤&#xff0c;如下图所示&#xff1a; 下面结合上图介绍每一个步骤所要完成的任务。 (1 )明确目标 当测…...

2024年移动手游趋势:休闲类手游收入逆势增长,欧美玩家成为主力

移动手游广告情报平台Sensor Tower近期发布的报告显示&#xff0c;从宏观数据来看&#xff0c;尽管2023年对于移动游戏市场来说是艰难的一年&#xff0c;无论是总下载量亦或是总收入都较去年有所下降&#xff0c;尤其是Google Play。但在总体下降的大趋势下&#xff0c;休闲游戏…...

npm 淘宝镜像证书过期,错误信息 Could not retrieve https://npm.taobao.org/mirrors/node/latest

更换 npm 证书 问题描述报错原因更换步骤1 找到 nvm 安装目录2 发现证书过期3 更换新地址4 保存后&#xff0c;重新安装成功 问题描述 在使用 nvm 安装新版本时&#xff0c;未成功&#xff0c;出现报错&#xff1a; Could not retrieve https://npm.taobao.org/mirrors/node/l…...

axios发送请求,后端无法获取cookie

1.前端 axios默认不携带cookie 添加如下代码 import axios from "axios" const requrst axios.create({baseURL: import.meta.env.VITE_APP_URL,timeout: 5000,}) //让axios携带cookie requrst.defaults.withCredentials true 2.后端nestjs main.ts app.enabl…...

【Spring Boot 源码学习】初识 ConfigurableEnvironment

《Spring Boot 源码学习系列》 初识 ConfigurableEnvironment 一、引言二、主要内容2.1 Environment2.1.1 配置文件&#xff08;profiles&#xff09;2.1.2 属性&#xff08;properties&#xff09; 2.2 ConfigurablePropertyResolver2.2.1 属性类型转换配置2.2.2 占位符配置2.…...

开关电源中强制连续FCCM模式与轻载高效PSM,PFM模式优缺点对比笔记

文章目录 前言一、连续FCCM模式优点&#xff1a;缺点&#xff1a; 二,轻载高效PSM&#xff0c;PFM优点&#xff1a;缺点: 总结 前言 今天我们来学习下开关电源中&#xff0c;强制连续FCCM模式与轻载高效PSM&#xff0c;PFM模式优缺点对比 一、连续FCCM模式 优点&#xff1a; …...

5分钟教你用AI把老照片动起来,别再去花49块9的冤枉钱了

文章目录 需要的工具 最近&#xff0c;AI视频在各大平台上&#xff0c;又火了。 只是火的形式&#xff0c;变成了将老照片动起来&#xff0c;打情感牌&#xff0c;或者做很多经典电视剧的再整活。 直接把可灵的生成时间&#xff0c;从以前的4分钟&#xff0c;生生的干成了20分钟…...

Ruby 环境变量

Ruby 环境变量 概述 环境变量在编程中扮演着重要的角色,尤其是在Ruby这样的动态编程语言中。它们是操作系统用来存储有关其操作环境的信息的变量,可以在程序运行时影响其行为。Ruby程序可以通过环境变量来获取配置信息、系统细节或用户特定的设置。本文将深入探讨Ruby中环境…...

BPF:BCC工具 funccount 统计内核函数调用(内核函数、跟踪点USDT探针)认知

写在前面 博文内容涉及BCC工具 funccount 认知funccount 可以帮助用户追踪和分析Linux系统上特定函数、系统探针或USDT探针的运行次数。这对于性能分析、故障排查和系统优化等场景非常有用。理解不足小伙伴帮忙指正 &#x1f603;,生活加油 不必太纠结于当下&#xff0c;也不必…...

DPO算法推导

DPO 核心思想&#xff1a;直接使用偏好数据进行策略优化&#xff0c;省去 reward 模型策略优化。 技术背景知识&#xff1a; 首先给定prompt x&#xff0c;生成两个答案 ( y 1 , y 2 ) Π S F T ( y ∣ x ) (y_1,y_2)~\Pi^{SFT}(y|x) (y1​,y2​) ΠSFT(y∣x) &#xff0c;并通…...

Qt源码分析:窗体绘制与响应

作为一套开源跨平台的UI代码库&#xff0c;窗体绘制与响应自然是最为基本的功能。在前面的博文中&#xff0c;已就Qt中的元对象系统(反射机制)、事件循环等基础内容进行了分析&#xff0c;并捎带阐述了窗体响应相关的内容。因此&#xff0c;本文着重分析Qt中窗体绘制相关的内容…...

docker 安装 禅道

docker pull hub.zentao.net/app/zentao:20.1.1 sudo docker network create --subnet172.172.172.0/24 zentaonet 使用 8087端口号访问 使用禅道mysql 映射到3307 sudo docker run \ --name zentao2 \ -p 8087:80 \ -p 3307:3306 \ --networkzentaonet \ --ip 172.172.172.…...

【简要说说】make 增量编译的原理

make 增量编译的原理 make是一个工具&#xff0c;它可以根据依赖关系和时间戳来自动执行编译命令。 当您修改了源代码文件后&#xff0c;make会检查它们的修改时间是否比目标文件&#xff08;如可执行文件或目标文件&#xff09;新&#xff0c;如果是&#xff0c;就会重新编译…...

DETRs Beat YOLOs on Real-time Object Detection论文翻译

cvpr 2024 论文名称 DETRs在实时目标检测上击败YOLO 地址 https://arxiv.longhoe.net/abs/2304.08069 代码 https://github.com/lyuwenyu/RT-DETR 目录 摘要 1介绍 2.相关工作 2.1实时目标探测器 2.2.端到端物体探测器 3.检测器的端到端速度 3.1.NMS分析 3.2.端到端速度…...

SpringBoot 多数据源配置

目录 一. 引入maven依赖包 二. 配置yml 三、创建 xml 分组文件 四、切换数据源 一. 引入maven依赖包 <dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot-starter</artifactId><version>3.6.1&…...

RK3568驱动指南|第十六篇 SPI-第192章 mcp2515驱动编写:完善write和read函数

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…...

#BI建模与数仓建模有什么区别?指标体系由谁来搭建?

问题1&#xff1a; 指标体系是我们数仓来搭建还是分析师来做&#xff0c;如何去推动&#xff1f; 问题2&#xff1a;BI建模与数仓建模有什么区别&#xff1f; 指标体系要想做好&#xff0c;其实是分两块内容的&#xff0c;一块是顶层设计阶段&#xff0c;业务指标体系的搭建&am…...

如何用Python实现三维可视化?

Python拥有很多优秀的三维图像可视化工具&#xff0c;主要基于图形处理库WebGL、OpenGL或者VTK。 这些工具主要用于大规模空间标量数据、向量场数据、张量场数据等等的可视化&#xff0c;实际运用场景主要在海洋大气建模、飞机模型设计、桥梁设计、电磁场分析等等。 本文简单…...

chrome.storage.local.set 未生效

之前chrome.storage.local.set 和 get 一直不起作用 使用以下代码运行成功。 chrome.storage.local.set({ pageState: "main" }).then(() > {console.log("Value is set");});chrome.storage.local.get(["pageState"]).then((result) > …...

泛微开发修炼之旅--30 linux-Ecology服务器运维脚本

文章链接&#xff1a;30 linux-ecology服务器运维脚本...

LeetCode 全排列

思路&#xff1a;这是一道暴力搜索问题&#xff0c;我们需要列出答案的所有可能组合。 题目给我们一个数组&#xff0c;我们很容易想到的做法是将数组中的元素进行排列&#xff0c;如何区分已选中和未选中的元素&#xff0c;容易想到的是建立一个标记数组&#xff0c;已经选中的…...

python实现支付宝异步回调验签

说明 python实现支付宝异步回调验签&#xff0c;示例中使用Django框架。 此方案使用了支付宝的pythonSDK&#xff0c;请一定装最新版本的&#xff0c;支付宝官网文档不知道多久没更新了&#xff0c;之前的版本pip安装会报一些c库不存在的错误&#xff1b; pip install alipay-…...

注意!Vue.js 或 Nuxt.js 中请停止使用.value

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 当您在代码中使用.value时,必须每次都检查变量是否存在并且是引用。 这可能很麻烦,因为在运行时使用.value可能会导致错误。然而,有一个简单的解决方法,即使用unref()而不是.value。 unref()会检查变量是否是引用,并自…...

Java:JDK、JRE和JVM 三者关系

文章目录 一、JDK是什么二、JRE是什么三、JDK、JRE和JVM的关系 一、JDK是什么 JDK&#xff08;Java Development Kit&#xff09;&#xff1a;Java开发工具包 JRE&#xff1a;Java运行时环境开发工具&#xff1a;javac&#xff08;编译工具&#xff09;、java&#xff08;运行…...