day60---面试专题(微服务面试题-参考回答)
微服务面试题
**面试官:**Spring Cloud 5大组件有哪些?
候选人:
早期我们一般认为的Spring Cloud五大组件是
- Eureka : 注册中心
- Ribbon : 负载均衡
- Feign : 远程调用
- Hystrix : 服务熔断
- Zuul/Gateway : 网关
随着SpringCloudAlibba在国内兴起 , 我们项目中使用了一些阿里巴巴的组件
注册中心/配置中心 Nacos
负载均衡 Ribbon
服务调用 Feign
服务保护 sentinel
服务网关 Gateway
**面试官:**服务注册和发现是什么意思?Spring Cloud 如何实现服务注册发现?
候选人:
我理解的是主要三块大功能,分别是服务注册 、服务发现、服务状态监控
我们当时项目采用的eureka作为注册中心,这个也是spring cloud体系中的一个核心组件
服务注册:服务提供者需要把自己的信息注册到eureka,由eureka来保存这些信息,比如服务名称、ip、端口等等
服务发现:消费者向eureka拉取服务列表信息,如果服务提供者有集群,则消费者会利用负载均衡算法,选择一个发起调用
服务监控:服务提供者会每隔30秒向eureka发送心跳,报告健康状态,如果eureka服务90秒没接收到心跳,从eureka中剔除
**面试官:**我看你之前也用过nacos、你能说下nacos与eureka的区别?
候选人:
我们当时xx项目就是采用的nacos作为注册中心,选择nacos还要一个重要原因就是它支持配置中心,不过nacos作为注册中心,也比eureka要方便好用一些,主要相同不同点在于几点:
- 共同点
Nacos与eureka都支持服务注册和服务拉取,都支持服务提供者心跳方式做健康检测
- Nacos与Eureka的区别
①Nacos支持服务端主动检测提供者状态:临时实例采用心跳模式,非临时实例采用主动检测模式
②临时实例心跳不正常会被剔除,非临时实例则不会被剔除
③Nacos支持服务列表变更的消息推送模式,服务列表更新更及时
④Nacos集群默认采用AP方式,当集群中存在非临时实例时,采用CP模式;Eureka采用AP方式
**面试官:**你们项目负载均衡如何实现的 ?
候选人:
是这样~~
在服务调用过程中的负载均衡一般使用SpringCloud的Ribbon 组件实现 , Feign的底层已经自动集成了Ribbon , 使用起来非常简单
当发起远程调用时,ribbon先从注册中心拉取服务地址列表,然后按照一定的路由策略选择一个发起远程调用,一般的调用策略是轮询
**面试官:**Ribbon负载均衡策略有哪些 ?
候选人:
我想想啊,有很多种,我记得几个:
RoundRobinRule:简单轮询服务列表来选择服务器
WeightedResponseTimeRule:按照权重来选择服务器,响应时间越长,权重越小
RandomRule:随机选择一个可用的服务器
ZoneAvoidanceRule:区域敏感策略,以区域可用的服务器为基础进行服务器的选择。使用Zone对服务器进行分类,这个Zone可以理解为一个机房、一个机架等。而后再对Zone内的多个服务做轮询(默认)
**面试官:**如果想自定义负载均衡策略如何实现 ?
候选人:
提供了两种方式:
1,创建类实现IRule接口,可以指定负载均衡策略,这个是全局的,对所有的远程调用都起作用
2,在客户端的配置文件中,可以配置某一个服务调用的负载均衡策略,只是对配置的这个服务生效远程调用
**面试官:**什么是服务雪崩,怎么解决这个问题?
候选人:
服务雪崩是指一个服务失败,导致整条链路的服务都失败的情形,一般我们在项目解决的话就是两种方案,第一个是服务降级,第二个是服务熔断,如果流量太大的话,可以考虑限流
服务降级:服务自我保护的一种方式,或者保护下游服务的一种方式,用于确保服务不会受请求突增影响变得不可用,确保服务不会崩溃,一般在实际开发中与feign接口整合,编写降级逻辑
服务熔断:默认关闭,需要手动打开,如果检测到 10 秒内请求的失败率超过 50%,就触发熔断机制。之后每隔 5 秒重新尝试请求微服务,如果微服务不能响应,继续走熔断机制。如果微服务可达,则关闭熔断机制,恢复正常请求
**面试官:**你们的微服务是怎么监控的?
候选人:
我们项目中采用的skywalking进行监控的
1,skywalking主要可以监控接口、服务、物理实例的一些状态。特别是在压测的时候可以看到众多服务中哪些服务和接口比较慢,我们可以针对性的分析和优化。
2,我们还在skywalking设置了告警规则,特别是在项目上线以后,如果报错,我们分别设置了可以给相关负责人发短信和发邮件,第一时间知道项目的bug情况,第一时间修复
**面试官:**你们项目中有没有做过限流 ? 怎么做的 ?
候选人:
我当时做的xx项目,采用就是微服务的架构,因为xx因为,应该会有突发流量,最大QPS可以达到2000,但是服务支撑不住,我们项目都通过压测最多可以支撑1200QPS。因为我们平时的QPS也就不到100,为了解决这些突发流量,所以采用了限流。
【版本1】
我们当时采用的nginx限流操作,nginx使用的漏桶算法来实现过滤,让请求以固定的速率处理请求,可以应对突发流量,我们控制的速率是按照ip进行限流,限制的流量是每秒20
【版本2】
我们当时采用的是spring cloud gateway中支持局部过滤器RequestRateLimiter来做限流,使用的是令牌桶算法,可以根据ip或路径进行限流,可以设置每秒填充平均速率,和令牌桶总容量
**面试官:**限流常见的算法有哪些呢?
候选人:
比较常见的限流算法有漏桶算法和令牌桶算法
漏桶算法是把请求存入到桶中,以固定速率从桶中流出,可以让我们的服务做到绝对的平均,起到很好的限流效果
令牌桶算法在桶中存储的是令牌,按照一定的速率生成令牌,每个请求都要先申请令牌,申请到令牌以后才能正常请求,也可以起到很好的限流作用
它们的区别是,漏桶和令牌桶都可以处理突发流量,其中漏桶可以做到绝对的平滑,令牌桶有可能会产生突发大量请求的情况,一般nginx限流采用的漏桶,spring cloud gateway中可以支持令牌桶算法
面试官:什么是CAP理论?
候选人:
CAP主要是在分布式项目下的一个理论。包含了三项,一致性、可用性、分区容错性
一致性(Consistency)是指更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致(强一致性),不能存在中间状态。
可用性(Availability) 是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。
分区容错性(Partition tolerance) 是指分布式系统在遇到任何网络分区故障时,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。
面试官:为什么分布式系统中无法同时保证一致性和可用性?
候选人:
嗯,是这样的~~
首先一个前提,对于分布式系统而言,分区容错性是一个最基本的要求,因此基本上我们在设计分布式系统的时候只能从一致性(C)和可用性(A)之间进行取舍。
如果保证了一致性(C):对于节点N1和N2,当往N1里写数据时,N2上的操作必须被暂停,只有当N1同步数据到N2时才能对N2进行读写请求,在N2被暂停操作期间客户端提交的请求会收到失败或超时。显然,这与可用性是相悖的。
如果保证了可用性(A):那就不能暂停N2的读写操作,但同时N1在写数据的话,这就违背了一致性的要求。
面试官:什么是BASE理论?
候选人:
嗯,这个也是CAP分布式系统设计理论
BASE是CAP理论中AP方案的延伸,核心思想是即使无法做到强一致性(StrongConsistency,CAP的一致性就是强一致性),但应用可以采用适合的方式达到最终一致性(Eventual Consitency)。它的思想包含三方面:
1、Basically Available(基本可用):基本可用是指分布式系统在出现不可预知的故障的时候,允许损失部分可用性,但不等于系统不可用。
2、Soft state(软状态):即是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。
3、Eventually consistent(最终一致性):强调系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。其本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
**面试官:**你们采用哪种分布式事务解决方案?
候选人:
我们当时是xx项目,主要使用到的seata的at模式解决的分布式事务
seata的AT模型分为两个阶段:
1、阶段一RM的工作:① 注册分支事务 ② 记录undo-log(数据快照)③ 执行业务sql并提交 ④报告事务状态
2、阶段二提交时RM的工作:删除undo-log即可
3、阶段二回滚时RM的工作:根据undo-log恢复数据到更新前
at模式牺牲了一致性,保证了可用性,不过,它保证的是最终一致性
**面试官:**分布式服务的接口幂等性如何设计?
候选人:
嗯,我们当时有一个xx项目的下单操作,采用的token+redis实现的,流程是这样的
第一次请求,也就是用户打开了商品详情页面,我们会发起一个请求,在后台生成一个唯一token存入redis,key就是用户的id,value就是这个token,同时把这个token返回前端
第二次请求,当用户点击了下单操作会后,会携带之前的token,后台先到redis进行验证,如果存在token,可以执行业务,同时删除token;如果不存在,则直接返回,不处理业务,就保证了同一个token只处理一次业务,就保证了幂等性
**面试官:**xxl-job路由策略有哪些?
候选人:
xxl-job提供了很多的路由策略,我们平时用的较多就是:轮询、故障转移、分片广播…
**面试官:**xxl-job任务执行失败怎么解决?
候选人:
有这么几个操作
第一:路由策略选择故障转移,优先使用健康的实例来执行任务
第二,如果还有失败的,我们在创建任务时,可以设置重试次数
第三,如果还有失败的,就可以查看日志或者配置邮件告警来通知相关负责人解决
**面试官:**如果有大数据量的任务同时都需要执行,怎么解决?
候选人:
我们会让部署多个实例,共同去执行这些批量的任务,其中任务的路由策略是分片广播
在任务执行的代码中可以获取分片总数和当前分片,按照取模的方式分摊到各个实例执行就可以了
相关文章:
day60---面试专题(微服务面试题-参考回答)
微服务面试题 **面试官:**Spring Cloud 5大组件有哪些? 候选人: 早期我们一般认为的Spring Cloud五大组件是 Eureka : 注册中心Ribbon : 负载均衡Feign : 远程调用Hystrix : 服务熔断Zuul/Gateway : 网关 随着SpringCloudAlibba在国内兴起 , …...
laravel+phpoffice+easyexcel实现导入
资源包下载地址 https://download.csdn.net/download/QiZong__BK/89503486 easy-excel下载: "dcat/easy-excel": "^1.0", 命令行: composer require dcat/easy-excel 前端代码 <!doctype html> <html lang"en&…...
Spring Boot集成多数据源的最佳实践
Spring Boot集成多数据源的最佳实践 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 为什么需要多数据源? 在实际的应用开发中,有时候…...
Java项目:基于SSM框架实现的班主任助理管理系统【ssm+B/S架构+源码+数据库+开题报告+毕业论文】
一、项目简介 本项目是一套基于SSM框架实现的班主任助理管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功…...
数据在内存中的存储方式
🌟🌟作者主页:ephemerals__ 🌟🌟所属专栏:C语言 目录 前言 一、整数的存储 二、大小端字节序及其判断 1.什么是大小端 2.为什么有大小端 3.用c语言编写程序判断大小端 三、浮点数的存储 1.浮点数…...
Selenium 监视数据收发
实际上,在我提供的示例中,确实使用了浏览器实例。webdriver.Chrome()这行代码正是创建了一个Chrome浏览器的WebDriver实例。Selenium Wire扩展了标准的Selenium WebDriver,允许你通过这个浏览器实例来监听网络请求。 当你运行类似这样的代码…...
基于 STM32 的智能睡眠呼吸监测系统设计
本设计的硬件构成: STM32F103C8T6单片机最小系统板(包含3.3V稳压电路时钟晶振电路复位电路(上电自复位,手动复位)),心率传感器、气压传感器、液晶显示、按键、蜂鸣器、LED灯、蓝牙模块组合而成…...
Spring的事务管理、AOP实现底层
目录 spring的事务管理是如何实现的? Spring的AOP的底层实现原理 spring的事务管理是如何实现的? 首先,spring的事务是由aop来实现的,首先要生成具体的代理对象,然后按照aop的整套流程来执行具体的操作逻辑ÿ…...
基于SpringBoot的篮球竞赛预约平台
你好,我是计算机学姐码农小野!如果你对篮球竞赛预约平台感兴趣或有相关需求,欢迎私信联系我。 开发语言: Java 数据库: MySQL 技术: SpringBootMySql 工具: MyEclipse、Tomcat 系统展示…...
学生用小台灯什么牌子的好?列举出几款学生用台灯推荐
眼睛是我们感知世界的窗口,但近年来,儿童青少年的视力健康却受到了严重困扰。数据显示,近视问题在儿童群体中呈现出明显的增长趋势,这给他们的学习和生活带来了诸多不便。虽然现代科技的快速发展使得电子产品成为了我们生活中不可…...
软件测试面试题:项目中的MQ是如何测试的?
通常,咱们会从两个方面来考虑:正常情况和异常情况。 首先,咱们得确保消息队列在正常工作时结果正确。比如,消息发送出去的时候,所有的字段都得齐全,接收方收到的消息也得一样。咱们得确保系统能够正确无误…...
Python爬取国家医保平台公开数据
国家医保服务平台数据爬取python爬虫数据爬取医疗公开数据 定点医疗机构查询定点零售药店查询医保机构查询药品分类与代码查询 等等,数据都能爬 接口地址:/ebus/fuwu/api/nthl/api/CommQuery/queryFixedHospital 签名参数:signData {dat…...
B站大课堂-自动化精品视频(个人存档)
基础知识 工业通信协议 Modbus 施耐德研发,有基于以太网的 ModbusTCP 协议和使用 485/232 串口通信的 ModbusRTU/ASCII。 Modbus 协议面世较早、协议简洁高效、商用免费、功能灵活、实现简单,是目前应用最广泛的现场总线协议。 我的笔记里边有一些推荐…...
C++_STL---priority_queue
priority_queue的相关介绍 优先级队列是一种容器适配器,根据严格的排序标准,它的第一个元素总是它所包含的元素中最大(小)的。该容器适配器类似于堆,在堆中可以随时插入元素,并且可以检索最大(小)堆元素(优先级队列中位于顶部的元…...
可移动天线辅助宽带通信的性能分析和优化
可移动天线辅助宽带通信的性能分析和优化 可移动天线 (MA) 已成为一种很有前景的技术,通过在发射器 (Tx) 和/或接收器 (Rx) 处实现天线的本地移动来实现更有利的信道条件,从而增强无线通信性能。 由于现有的MA辅助无线通信研究主要考虑平坦衰落信道中的…...
h5兼容table ,如何实现h5在app内使用h5渲染table表格而且实现横屏预览?
压图地址 横屏div 通过css 实现 transform: rotate(90deg); transformOrigin: 50vw 50vw ; height: 100vw; width: 100vh;<divclass"popup-box":style"{transform: originSet 0 ? rotate(90deg) : ,transformOrigin: originSet 0 ? 50vw 50vw : ,height…...
在windows上安装objection
安装命令pip install objection -i https://mirrors.aliyun.com/pypi/simple hook指定进程 objection -g 测试 explore 进程名不定是包名,也可能是app名字,如“测试”就是app的名字 若出现如下错误,说明python 缺少setuptools 直接安装setu…...
人脸特征68点识别 C++
1、加载一张图片 main函数: cv::Mat img cv::imread("5.jpg");vector<Point2f> points_vec dectectFace68(img);2、人脸68特征识别函数 在这里vector<Point2f> dectectFace68(Mat src) {vector<Point2f> points_vec;int* pResults …...
部署LVS-DR 群集
1 LVS-DR 集群 LVS-DR (Linux Virtual Server Director Server ) 工作模式, 是生产环境中最常用的一种工作模式 1.1:LVS-DR工作原理 LVS-DR 模式, Director Server 作为群集的访问入口, 不作为网关使用,…...
nginx的正向代理和反向代理
概念 正向代理以及缓存配置 代理:客户端不再是直接访问服务端,通过代理服务器访问服务端。 正向代理:面向客户端,我们通过代理服务器的ip地址访问目标服务器。 服务端只知道代理服务器的地址,真正的客户端ip可以隐…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
