读书笔记-Java并发编程的艺术-第3章(Java内存模型)-第6节(final域的内存语义)
文章目录
- 3.6 final域的内存语义
- 3.6.1 final 域的重排序规则
- 3.6.2 写final 域的重排序规则
- 3.6.3 读final 域的重排序规则
- 3.6.4 final 域为引用类型
- 3.6.5 为什么 final 引用不能从构造函数内“逸出”
- 3.6.6 final 语义在处理器中的实现
- 3.6.7 JSR-133 为什么要增强final 的语义
3.6 final域的内存语义
与前面介绍的锁和volatile相比,对final域的读和写更像是普通的变量访问。下面将介绍final域的内存语义。
3.6.1 final 域的重排序规则
对于final域,编译器和处理器要遵守两个重排序规则。
- 1. 在构造函数内对一个fnal域的写人,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
- 2. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。
下面通过一些示例性的代码来分别说明这两个规则。
public class FinalExample {int i;final int j;static FinalExample obj;public FinalExample() { // 构造函数this.i = 1; // 写普通域this.j = 2; // 写final域}public static void writer() { // 写线程A执行obj = new FinalExample();}public static void reader() { // 读线程B执行FinalExample object = obj; // 读对象引用int a = object.i; // 读普通域int b = object.j; // 读final域}
}
这里假设一个线程A执行 writer(方法,随后另一个线程B执行readerO方法。下面我们通过这两个线程的交互来说明这两个规则。
3.6.2 写final 域的重排序规则
写final域的重排序规则禁止把final域的写重排序到构造函数之外。这个规则的实现包含下面2个方面。
-
- JMM禁止编译器把final域的写重排序到构造函数之外。
-
- 编译器会在 final域的写之后,构造函数return之前,插人一个 StoreStore屏障。这个屏障禁止处理器把final域的写重排序到构造函数之外。
现在让我们分析writer()方法。writer()方法只包含一行代码:finalExample=new FinalExample()。这行代码包含两个步骤,如下。
-
- 构造一个 FinalExample 类型的对象。
-
- 把这个对象的引用赋值给引用变量 obj。
假设线程B读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序。
在下图中,写普通域的操作被编译器重排序到了构造函数之外,读线程B错误地读取了普通变量i初始化之前的值。而写final域的操作,被写final域的重排序规则“限定在了构造函数之内,读线程B正确地读取了final变量初始化之后的值。
写final域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的final域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程B“看到”对象引用obj时,很可能obj对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值1还没有写入普通域i)。
总结:构造函数被引用时,里面的属性是final类型则值肯定被重写赋值了,若不是final类型则可能还没有被重新赋值,也就是说构造器只是构建了一个对象,但是构造器里面的内容不一定会在构造器被引用的时候执行,需要属性是final类型才一定会在被引用时立即执行。
3.6.3 读final 域的重排序规则
读final域的重排序规则是,在一个线程中,初次读对象引用与初次读该对象包含的final域,JMM禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读final 域操作的前面插入一个 LoadLoad 屏障。
初次读对象引用与初次读该对象包含的final域,这两个操作之间存在间接依赖关系由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如alpha处理器),这个规则就是专门用来针对这种处理器的。
reader()方法包含3个操作。
- 初次读引用变量 obj。
- 初次读引用变量obj指向对象的普通域j。
- 初次读引用变量obj指向对象的final域i。
现在假设写线程A没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下图所示是一种可能的执行时序。
在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时该域还没有被写线程A写人,这是一个错误的读取操作。而读final域的重排序规则会把读对象final域的操作“限定”在读对象引用之后,此时该final域已经被A线程初始化过了这是一个正确的读取操作。
读final域的重排序规则可以确保:在读一个对象的fnal域之前,一定会先读包含这个final域的对象的引用。在这个示例程序中,如果该引用不为null,那么引用对象的 final域一定已经被A线程初始化过了。
总结:使用构造器,并得到构造器里的属性值时,若属性是final类型,则肯定是已经是新值了,而非final类型,则可能还没有被赋值,
这时读取的就是构造器里内容执行之前的值。
3.6.4 final 域为引用类型
上面我们看到的final域是基础数据类型,如果final域是引用类型,将会有什么效果?
请看下列示例代码。
public class FinalReferenceExample {final int[] intArray; // final是引用类型static FinalReferenceExample obj;public FinalReferenceExample() { // 构造函数intArray = new int[1]; // 1intArray[0] = 1; // 2}public static void writerOne() { // 写线程A执行obj = new FinalReferenceExample(); // 3}public static void writerTwo() { // 读线程B执行obj.intArray[0] = 2; // 4}public static void reader() { // 读线程C执行if (obj != null) { // 5int temp1 = obj.intArray[0]; // 6}}
}
本例final域为一个引用类型,它引用一个int型的数组对象。对于引用类型,写final域的重排序规则对编译器和处理器增加了如下约束:在构造函数内对一个final引用的对象的成员域的写人,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个
操作之间不能重排序。
对上面的示例程序,假设首先线程A执行writerOne()方法,执行完后线程B执行writerTwo()方法,执行完后线程C执行reader()方法。
下图是一种可能的线程执行时序。
在下图中,1是对final域的写人,2是对这个final域引用的对象的成员域的写人,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。
JMM可以确保读线程C至少能看到写线程A在构造函数中对final引用对象的成员域的写人。即C至少能看到数组下标0的值为1。而写线程B对数组元素的写入,读线程C可能看得到,也可能看不到。JMM不保证线程B的写人对读线程C可见,因为写线程B和读线程C之间存在数据竞争,此时的执行结果不可预知。
如果想要确保读线程C看到写线程B对数组元素的写入,写线程B和读线程C之间需要使用同步原语(lock或volatile)来确保内存可见性。
3.6.5 为什么 final 引用不能从构造函数内“逸出”
前面我们提到过,写final域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的final域已经在构造函数中被正确初始化过了。其实,要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程所见,也就是对象引用不能在构造函数中“逸出”。为了说明问题,让我们来看下面的示例代码。
class FinalReferenceEscapeExample {final int i; static FinalReferenceEscapeExample obj;public FinalReferenceEscapeExample() { i = 1; // 1 写final域obj = this; // 2 this引用在此"逸出"}public static void writer() { obj = new FinalReferenceEscapeExample(); }public static void reader() { if (obj != null) { // 3int temp = obj.i; // 4}}
}
假设一个线程A执行writer()方法,另一个线程B执行reader()方法。这里的操作2使得对象还未完成构造前就为线程B可见。即使这里的操作2是构造函数的最后一步,且在程序中操作2排在操作1后面,执行read0)方法的线程仍然可能无法看到na城被初始化后的值,因为这里的操作1和操作2之间可能被重排序。实际的执行时序可能如下图所示。
从上图可以看出:在构造函数返回前,被构造对象的引用不能为其他线程所见,因为此时的final域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到final域正确初始化之后的值。
3.6.6 final 语义在处理器中的实现
现在我们以X86处理器为例,说明final语义在处理器中的具体实现。
上面我们提到,写final域的重排序规则会要求编译器在final域的写之后,构造函数return 之前插入一个 StoreStore 障屏。读 final域的重排序规则要求编译器在读 final域的操作前面插入一个 LoadLoad 屏障。
由于X86处理器不会对写-写操作做重排序,所以在X86处理器中,写final域需要的StoreStore 屏障会被省略掉。同样,由于X86处理器不会对存在间接依赖关系的操作做重排序,所以在X86处理器中,读final域需要的LoadLoad屏障也会被省略掉。也就是说,在X86处理器中,final域的读/写不会插人任何内存屏障!
3.6.7 JSR-133 为什么要增强final 的语义
在旧的Java内存模型中,一个最严重的缺陷就是线程可能看到final域的值会改变。比如,一个线程当前看到一个整型final域的值为0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个final域的值时,却发现值变为1(被某个线程初始化之后的值)。最常见的例子就是在旧的Java 内存模型中,String 的值可能会改变。
为了修补这个漏洞,JSR-133专家组增强了final的语义。通过为final域增加写和读重排序规则,可以为Java程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指lock和 volatie 的使用)就可以保证任意线程都能看到这个final域在构造函数中被初始化之后的值。
相关文章:

读书笔记-Java并发编程的艺术-第3章(Java内存模型)-第6节(final域的内存语义)
文章目录 3.6 final域的内存语义3.6.1 final 域的重排序规则3.6.2 写final 域的重排序规则3.6.3 读final 域的重排序规则3.6.4 final 域为引用类型3.6.5 为什么 final 引用不能从构造函数内“逸出”3.6.6 final 语义在处理器中的实现3.6.7 JSR-133 为什么要增强final 的语义 3.…...

Spring AI 1.0.0 新变化,从 0.8.1 如何升级
Spring AI 1.0.0-M1 版本已经发布,距离 1.0.0 正式版又更近了一步。同时这也意味着,Spring AI 1.0.0 的 API 已经基本确定,不会发生大的改动。这里介绍一下,相对于上一个发布版本 0.8.1,Spring AI 1.0.0 的一些重要的变…...

【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战
目录 一、引言 二、FFmpeg工具介绍 2.1 什么是FFmpeg 2.2 FFmpeg核心原理 2.3 FFmpeg使用示例 三、FFmpegWhisper二阶段法视频理解实战 3.1 FFmpeg安装 3.2 Whisper模型下载 3.3 FFmpeg抽取视频的音频 3.3.1 方案一:命令行方式使用ffmpeg 3.3.2 方案二&a…...

Java中继承接口和实现接口的区别、接口和抽象类的区别、并理解关键字interface、implements
初学者容易把继承接口和实现接口搞混,专门整理一下,顺便简单介绍一下interface、implements关键字。 继承接口和实现接口的区别、接口的特点 继承接口是说的只有接口才可以继承接口,是接口与接口间的。实现接口是说的接口与类之间ÿ…...

Excel为数据绘制拆线图,并将均值线叠加在图上,以及整个过程的区域录屏python脚本
Excel为数据绘制拆线图,并将均值线叠加在图上,以及整个过程的区域录屏python脚本 1.演示动画A.视频B.gif动画 2.跟踪鼠标区域的录屏脚本 Excel中有一组数据,希望画出曲线,并且能把均值线也绘制在图上,以下动画演示了整个过程,并且提供了区域录屏脚本,原理如下: 为节约空间,避免…...

易保全推动区块链应用与AI融合创新发展
数字化时代,区块链和人工智能技术作为当下两大“黑科技”,两者的深度结合,正在为企业数字化转型带来前所未有的机遇。 易保全作为国内权威的电子数据存证保全机构,积极探索两者的融合之道,将区块链的去中心化、不可篡…...

C++(Python)肥皂泡沫普拉托边界膜曲面模型算法
🎯要点 🎯肥皂泡二维流体模拟 | 🎯泡沫普拉托边界膜曲面模型算法演化厚度变化 | 🎯螺旋曲面三周期最小结构生成 📜皂膜用例:Python计算物理粒子及拉格朗日和哈密顿动力学 | Python和MATLAB粘性力接触力动…...

VBA打开其他Excel文件
前言 本节会介绍通过VBA实现打开其他excel文件,包括模糊匹配文件名称、循环同时打开多个文件,并获取工作表及工作簿进行数据操作后,对打开的文件进行保存并关闭操作。 一、打开固定文件名称的文件 场景说明: 1.新建一个宏文件VBA…...

模拟 ADC 的前端
ADC 的 SPICE 模拟 反复试验的方法将信号发送到 ADC 非常耗时,而且可能有效也可能无效。如果转换器捕获电压信息的关键时刻模拟输入引脚不稳定,则无法获得正确的输出数据。SPICE 模型允许您执行的步是验证所有模拟输入是否稳定,以便没有错误…...

tls各个版本的安全性介绍
TLS(Transport Layer Security)协议的各个版本在安全性方面经历了逐步的演进和改进,以应对不断变化的网络安全威胁。以下是各主要版本的安全性概览: TLS 1.0: 发布于1999年,是SSL 3.0的后续版本。在其发布时…...

PHP家政服务预约单开版微信小程序系统源码
🏠 —— 便捷生活,从指尖开始💪 🌈【开篇:家政新风尚,一键触达】 在忙碌的生活节奏中,你是否渴望拥有一个温馨、整洁的家,却又苦于找不到合适的家政服务?现在ÿ…...

数据增强:目标检测算法中的性能提升利器
引言 目标检测是计算机视觉领域的核心任务之一,旨在从图像或视频中识别和定位感兴趣的对象。然而,由于训练数据的局限性,目标检测模型往往面临过拟合和泛化能力不足的问题。数据增强作为一种有效的解决方案,通过增加数据多样性来…...

KVB交易平台 :市场迎来新热潮!铜价会持续上涨吗?
近期,全球铜价出现明显上涨趋势。韩国光阳LME仓库的铜库存显著下降,市场对即时需求的增加作出了积极反应。供应端的紧张和需求端的复苏共同推动了铜价的上涨。 KVB外汇 分析师们对未来铜价保持谨慎乐观态度,认为长期内铜价有望保持稳定甚至进…...

React@16.x(44)路由v5.x(9)源码(1)- path-to-regexp
目录 1,作用2,实现获取 match 对象2.1,match 对象的内容2.2,注意点2.3,实现 1,作用 之前在介绍 2.3 match 对象 时,提到了 react-router 使用第3方库 path-to-regexp 来匹配路径正则。 我们也…...

C#面:String str=new String(“a“)和String str = “a“有什么区别
String str new String(“a”)和String str “a”的区别在于对象的创建方式和内存分配方式。 字符串 str new String(“a”): 使用new关键字显式地创建了一个新的String对象。 每次执行这行代码时,都会…...

CS算法(二)—— 斜视SAR点目标仿真
SAR成像专栏目录 我们按照Cumming教授所著的《合成孔径雷达成像——算法与实现》7.6节的点目标参数进行仿真,斜视角设置为8,中心斜距改为1000km。先放最终的仿真结果: 1. 参数配置 在中心点和中心的的上下左右方向设置5个点目标 : function para=config_sar_para_cumming(…...

2024亚洲国际餐饮展览会(北京餐饮展|火锅展|预制菜展会)
2024北京餐饮展会,2024北京食材展会,2024北京火锅展会,2024北京火锅食材展会,2024北京预制菜展会,2024北京预制食材展会, 2024亚洲国际餐饮展览会(北京餐饮展|火锅展|预制菜展会) …...

【RabbitMQ问题踩坑】RabbitMQ设置手动ack后,消息队列有多条消息,只能消费一条,就不继续消费了,这是为什么 ?
现象:我发送5条消息到MQ队列中,同时,我在yml中设置的是需要在代码中手动确认,但是我把代码中的手动ack给关闭了,会出现什么情况? yml中配置,配置需要在代码中手动去确认消费者消费消息成功&…...

深度解码:需求跟踪的艺术与实战应用
文章目录 引言一、需求跟踪的定义二、需求跟踪矩阵2.1 需求跟踪矩阵包含的内容2.2 跟踪矩阵层级2.3 需求属性2.4 参考表格 三、需求跟踪的收益3.1 确保商业价值最大化3.2 满足客户期望3.3 范围管理3.4 决策支持3.5 提高效率和效果3.6 文档化和沟通3.7 变更管理3.8 测量和改进 四…...

数据结构——树的基础概念
目录 1.树的概念 2.树的相关概念 3.树的表示 (1)直接表示法 (2)双亲表示法 (3)左孩子右兄弟表示法 4.树在实际中的运用(表示文件系统的目录树结构) 1.树的概念 树是一种非线性的数据结构࿰…...

TimerManager和Timer
在RTSP服务器中需要一个定时器来定时发送音频帧和视频帧。音频帧每隔23ms发送一帧,视频帧每隔40ms发一帧。 因此需要两个定时器来定时发送,此时我们就需要用到一个TimerManager来管理Timer。 在TimerManager类中我们需要创建定时器文件描述符ÿ…...

手写Spring-MVC之前后置处理器与异常处理、数据库框架
Day48 手写Spring-MVC之前后置处理器与异常处理 前后置处理器 概念:从服务器获取的JSON数据可能是加密后的,因此服务端获取的时候需要进行解密(前置处理器)。 而从服务器传出的JSON数据可能需要加密,因此需要在处理返…...

学习笔记(linux高级编程)11
进程间通信 》信号通信 应用:异步通信。 中断,, 1~64;32应用编程。 如何响应: Term Default action is to terminate the process. Ign Default action is to ignore the signal. wait Core Default action is …...

vite+vue3+nginx配置统一公共前缀
方案1:重定向 server {listen 80;server_name localhost;location / {root /usr/share/nginx/html;index index.html;}location /music/ {proxy_pass http://127.0.0.1:80/;} }方案2:vitenginx双重配置 在方案1中,我们虽然能够实现 通过 …...

android 国内下载Gradle源
在中国使用 Gradle 时,可以配置使用一些国内的镜像源,以提高下载速度和稳定性。以下是几个常用的 Gradle 镜像源地址: 配置 gradle-wrapper.properties 文件: 阿里云: distributionUrlhttps\://services.gradle.org/distributions/gradle-7.…...

mysql8一键安装脚本(linux) 拿走即用
创建一个shell文件,将下面的代码放里面去,然后放到linux服务器上运行就可以了 #!/bin/bash#---------------------* # * # 2021-10-08 * # install mysql-8 * # * #---------------------*route=/usr #包存放路径 mys…...

C# 开发Winform DataGridView的增删改查实战
在C# WinForms应用程序中,DataGridView控件是一个非常强大的工具,用于显示和编辑表格数据。下面我将详细介绍如何在WinForm应用程序中使用DataGridView实现基本的数据库操作:增加、删除、修改和查询(CRUD)。 第一步&a…...

CentOS 7镜像列表服务下线,还想继续使用该怎么办?
目录 问题和解决方法 mirrorlist.centos.org 作用 vault.centos.org 作用 CentOS 7的生命周期已经在2024年6月30日终止(End of Life,EOL),官方将不再对该版本进行问题修复、功能更新以及其他形式的维护支持。这意味着使用 Cent…...

代码随想录训练营第二十八天 122买卖股票的最佳时间II 55跳跃游戏 45跳跃游戏II 1005K次取反后最大化的数组和
第一题: 原题链接:122. 买卖股票的最佳时机 II - 力扣(LeetCode) 思路: 这题十分简单,就是把相邻天数的金额相减,如果发现大于0就加到res中,返回res即可 代码如下: …...

在node环境使用MySQL
什么是Sequelize? Sequelize是一个基于Promise的NodeJS ORM模块 什么是ORM? ORM(Object-Relational-Mapping)是对象关系映射 对象关系映射可以把JS中的类和对象,和数据库中的表和数据进行关系映射。映射之后我们就可以直接通过类和对象来操作数据表和数据了, 就…...