当前位置: 首页 > news >正文

读书笔记-Java并发编程的艺术-第3章(Java内存模型)-第6节(final域的内存语义)

文章目录

  • 3.6 final域的内存语义
    • 3.6.1 final 域的重排序规则
    • 3.6.2 写final 域的重排序规则
    • 3.6.3 读final 域的重排序规则
    • 3.6.4 final 域为引用类型
    • 3.6.5 为什么 final 引用不能从构造函数内“逸出”
    • 3.6.6 final 语义在处理器中的实现
    • 3.6.7 JSR-133 为什么要增强final 的语义

3.6 final域的内存语义

与前面介绍的锁和volatile相比,对final域的读和写更像是普通的变量访问。下面将介绍final域的内存语义。

3.6.1 final 域的重排序规则

对于final域,编译器和处理器要遵守两个重排序规则。

  • 1. 在构造函数内对一个fnal域的写人,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序。
  • 2. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序。

下面通过一些示例性的代码来分别说明这两个规则。

public class FinalExample {int i;final int j;static FinalExample obj;public FinalExample() {         // 构造函数this.i = 1;                 // 写普通域this.j = 2;                 // 写final域}public static void writer() {   // 写线程A执行obj = new FinalExample();}public static void reader() {   // 读线程B执行FinalExample object = obj;  // 读对象引用int a = object.i;           // 读普通域int b = object.j;           // 读final域}
}

这里假设一个线程A执行 writer(方法,随后另一个线程B执行readerO方法。下面我们通过这两个线程的交互来说明这两个规则。

3.6.2 写final 域的重排序规则

写final域的重排序规则禁止把final域的写重排序到构造函数之外。这个规则的实现包含下面2个方面。

    1. JMM禁止编译器把final域的写重排序到构造函数之外。
    1. 编译器会在 final域的写之后,构造函数return之前,插人一个 StoreStore屏障。这个屏障禁止处理器把final域的写重排序到构造函数之外。

现在让我们分析writer()方法。writer()方法只包含一行代码:finalExample=new FinalExample()。这行代码包含两个步骤,如下。

    1. 构造一个 FinalExample 类型的对象。
    1. 把这个对象的引用赋值给引用变量 obj。

假设线程B读对象引用与读对象的成员域之间没有重排序(马上会说明为什么需要这个假设),下图是一种可能的执行时序。

在下图中,写普通域的操作被编译器重排序到了构造函数之外,读线程B错误地读取了普通变量i初始化之前的值。而写final域的操作,被写final域的重排序规则“限定在了构造函数之内,读线程B正确地读取了final变量初始化之后的值。

写final域的重排序规则可以确保:在对象引用为任意线程可见之前,对象的final域已经被正确初始化过了,而普通域不具有这个保障。以上图为例,在读线程B“看到”对象引用obj时,很可能obj对象还没有构造完成(对普通域i的写操作被重排序到构造函数外,此时初始值1还没有写入普通域i)。

在这里插入图片描述
总结:构造函数被引用时,里面的属性是final类型则值肯定被重写赋值了,若不是final类型则可能还没有被重新赋值,也就是说构造器只是构建了一个对象,但是构造器里面的内容不一定会在构造器被引用的时候执行,需要属性是final类型才一定会在被引用时立即执行。

3.6.3 读final 域的重排序规则

读final域的重排序规则是,在一个线程中,初次读对象引用与初次读该对象包含的final域,JMM禁止处理器重排序这两个操作(注意,这个规则仅仅针对处理器)。编译器会在读final 域操作的前面插入一个 LoadLoad 屏障。

初次读对象引用与初次读该对象包含的final域,这两个操作之间存在间接依赖关系由于编译器遵守间接依赖关系,因此编译器不会重排序这两个操作。大多数处理器也会遵守间接依赖,也不会重排序这两个操作。但有少数处理器允许对存在间接依赖关系的操作做重排序(比如alpha处理器),这个规则就是专门用来针对这种处理器的。

reader()方法包含3个操作。

  • 初次读引用变量 obj。
  • 初次读引用变量obj指向对象的普通域j。
  • 初次读引用变量obj指向对象的final域i。

现在假设写线程A没有发生任何重排序,同时程序在不遵守间接依赖的处理器上执行,下图所示是一种可能的执行时序。

在这里插入图片描述

在上图中,读对象的普通域的操作被处理器重排序到读对象引用之前。读普通域时该域还没有被写线程A写人,这是一个错误的读取操作。而读final域的重排序规则会把读对象final域的操作“限定”在读对象引用之后,此时该final域已经被A线程初始化过了这是一个正确的读取操作。

读final域的重排序规则可以确保:在读一个对象的fnal域之前,一定会先读包含这个final域的对象的引用。在这个示例程序中,如果该引用不为null,那么引用对象的 final域一定已经被A线程初始化过了。

总结:使用构造器,并得到构造器里的属性值时,若属性是final类型,则肯定是已经是新值了,而非final类型,则可能还没有被赋值,
这时读取的就是构造器里内容执行之前的值。

3.6.4 final 域为引用类型

上面我们看到的final域是基础数据类型,如果final域是引用类型,将会有什么效果?
请看下列示例代码。

public class FinalReferenceExample {final int[] intArray;               // final是引用类型static FinalReferenceExample obj;public FinalReferenceExample() {         // 构造函数intArray = new int[1];               // 1intArray[0] = 1;                     // 2}public static void writerOne() {         // 写线程A执行obj = new FinalReferenceExample();   // 3}public static void writerTwo() {         // 读线程B执行obj.intArray[0] = 2;                 // 4}public static void reader() {            // 读线程C执行if (obj != null) {                   // 5int temp1 = obj.intArray[0];     // 6}}
}

本例final域为一个引用类型,它引用一个int型的数组对象。对于引用类型,写final域的重排序规则对编译器和处理器增加了如下约束:在构造函数内对一个final引用的对象的成员域的写人,与随后在构造函数外把这个被构造对象的引用赋值给一个引用变量,这两个
操作之间不能重排序。

对上面的示例程序,假设首先线程A执行writerOne()方法,执行完后线程B执行writerTwo()方法,执行完后线程C执行reader()方法。
下图是一种可能的线程执行时序。

在下图中,1是对final域的写人,2是对这个final域引用的对象的成员域的写人,3是把被构造的对象的引用赋值给某个引用变量。这里除了前面提到的1不能和3重排序外,2和3也不能重排序。

JMM可以确保读线程C至少能看到写线程A在构造函数中对final引用对象的成员域的写人。即C至少能看到数组下标0的值为1。而写线程B对数组元素的写入,读线程C可能看得到,也可能看不到。JMM不保证线程B的写人对读线程C可见,因为写线程B和读线程C之间存在数据竞争,此时的执行结果不可预知。

如果想要确保读线程C看到写线程B对数组元素的写入,写线程B和读线程C之间需要使用同步原语(lock或volatile)来确保内存可见性。

3.6.5 为什么 final 引用不能从构造函数内“逸出”

前面我们提到过,写final域的重排序规则可以确保:在引用变量为任意线程可见之前,该引用变量指向的对象的final域已经在构造函数中被正确初始化过了。其实,要得到这个效果,还需要一个保证:在构造函数内部,不能让这个被构造对象的引用为其他线程所见,也就是对象引用不能在构造函数中“逸出”。为了说明问题,让我们来看下面的示例代码。

class FinalReferenceEscapeExample {final int i;             static FinalReferenceEscapeExample obj;public FinalReferenceEscapeExample() {       i = 1;                        // 1 写final域obj = this;                   // 2 this引用在此"逸出"}public static void writer() {       obj = new FinalReferenceEscapeExample();   }public static void reader() {            if (obj != null) {                   // 3int temp = obj.i;                // 4}}
}

在这里插入图片描述

假设一个线程A执行writer()方法,另一个线程B执行reader()方法。这里的操作2使得对象还未完成构造前就为线程B可见。即使这里的操作2是构造函数的最后一步,且在程序中操作2排在操作1后面,执行read0)方法的线程仍然可能无法看到na城被初始化后的值,因为这里的操作1和操作2之间可能被重排序。实际的执行时序可能如下图所示。

在这里插入图片描述

从上图可以看出:在构造函数返回前,被构造对象的引用不能为其他线程所见,因为此时的final域可能还没有被初始化。在构造函数返回后,任意线程都将保证能看到final域正确初始化之后的值。

3.6.6 final 语义在处理器中的实现

现在我们以X86处理器为例,说明final语义在处理器中的具体实现。

上面我们提到,写final域的重排序规则会要求编译器在final域的写之后,构造函数return 之前插入一个 StoreStore 障屏。读 final域的重排序规则要求编译器在读 final域的操作前面插入一个 LoadLoad 屏障。

由于X86处理器不会对写-写操作做重排序,所以在X86处理器中,写final域需要的StoreStore 屏障会被省略掉。同样,由于X86处理器不会对存在间接依赖关系的操作做重排序,所以在X86处理器中,读final域需要的LoadLoad屏障也会被省略掉。也就是说,在X86处理器中,final域的读/写不会插人任何内存屏障!

3.6.7 JSR-133 为什么要增强final 的语义

在旧的Java内存模型中,一个最严重的缺陷就是线程可能看到final域的值会改变。比如,一个线程当前看到一个整型final域的值为0(还未初始化之前的默认值),过一段时间之后这个线程再去读这个final域的值时,却发现值变为1(被某个线程初始化之后的值)。最常见的例子就是在旧的Java 内存模型中,String 的值可能会改变。

为了修补这个漏洞,JSR-133专家组增强了final的语义。通过为final域增加写和读重排序规则,可以为Java程序员提供初始化安全保证:只要对象是正确构造的(被构造对象的引用在构造函数中没有“逸出”),那么不需要使用同步(指lock和 volatie 的使用)就可以保证任意线程都能看到这个final域在构造函数中被初始化之后的值。

相关文章:

读书笔记-Java并发编程的艺术-第3章(Java内存模型)-第6节(final域的内存语义)

文章目录 3.6 final域的内存语义3.6.1 final 域的重排序规则3.6.2 写final 域的重排序规则3.6.3 读final 域的重排序规则3.6.4 final 域为引用类型3.6.5 为什么 final 引用不能从构造函数内“逸出”3.6.6 final 语义在处理器中的实现3.6.7 JSR-133 为什么要增强final 的语义 3.…...

Spring AI 1.0.0 新变化,从 0.8.1 如何升级

Spring AI 1.0.0-M1 版本已经发布,距离 1.0.0 正式版又更近了一步。同时这也意味着,Spring AI 1.0.0 的 API 已经基本确定,不会发生大的改动。这里介绍一下,相对于上一个发布版本 0.8.1,Spring AI 1.0.0 的一些重要的变…...

【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战

目录 一、引言 二、FFmpeg工具介绍 2.1 什么是FFmpeg 2.2 FFmpeg核心原理 2.3 FFmpeg使用示例 三、FFmpegWhisper二阶段法视频理解实战 3.1 FFmpeg安装 3.2 Whisper模型下载 3.3 FFmpeg抽取视频的音频 3.3.1 方案一:命令行方式使用ffmpeg 3.3.2 方案二&a…...

Java中继承接口和实现接口的区别、接口和抽象类的区别、并理解关键字interface、implements

初学者容易把继承接口和实现接口搞混,专门整理一下,顺便简单介绍一下interface、implements关键字。 继承接口和实现接口的区别、接口的特点 继承接口是说的只有接口才可以继承接口,是接口与接口间的。实现接口是说的接口与类之间&#xff…...

Excel为数据绘制拆线图,并将均值线叠加在图上,以及整个过程的区域录屏python脚本

Excel为数据绘制拆线图,并将均值线叠加在图上,以及整个过程的区域录屏python脚本 1.演示动画A.视频B.gif动画 2.跟踪鼠标区域的录屏脚本 Excel中有一组数据,希望画出曲线,并且能把均值线也绘制在图上,以下动画演示了整个过程,并且提供了区域录屏脚本,原理如下: 为节约空间,避免…...

易保全推动区块链应用与AI融合创新发展

数字化时代,区块链和人工智能技术作为当下两大“黑科技”,两者的深度结合,正在为企业数字化转型带来前所未有的机遇。 易保全作为国内权威的电子数据存证保全机构,积极探索两者的融合之道,将区块链的去中心化、不可篡…...

C++(Python)肥皂泡沫普拉托边界膜曲面模型算法

🎯要点 🎯肥皂泡二维流体模拟 | 🎯泡沫普拉托边界膜曲面模型算法演化厚度变化 | 🎯螺旋曲面三周期最小结构生成 📜皂膜用例:Python计算物理粒子及拉格朗日和哈密顿动力学 | Python和MATLAB粘性力接触力动…...

VBA打开其他Excel文件

前言 本节会介绍通过VBA实现打开其他excel文件,包括模糊匹配文件名称、循环同时打开多个文件,并获取工作表及工作簿进行数据操作后,对打开的文件进行保存并关闭操作。 一、打开固定文件名称的文件 场景说明: 1.新建一个宏文件VBA…...

模拟 ADC 的前端

ADC 的 SPICE 模拟 反复试验的方法将信号发送到 ADC 非常耗时,而且可能有效也可能无效。如果转换器捕获电压信息的关键时刻模拟输入引脚不稳定,则无法获得正确的输出数据。SPICE 模型允许您执行的步是验证所有模拟输入是否稳定,以便没有错误…...

tls各个版本的安全性介绍

TLS(Transport Layer Security)协议的各个版本在安全性方面经历了逐步的演进和改进,以应对不断变化的网络安全威胁。以下是各主要版本的安全性概览: TLS 1.0: 发布于1999年,是SSL 3.0的后续版本。在其发布时…...

PHP家政服务预约单开版微信小程序系统源码

🏠 —— 便捷生活,从指尖开始💪 🌈【开篇:家政新风尚,一键触达】 在忙碌的生活节奏中,你是否渴望拥有一个温馨、整洁的家,却又苦于找不到合适的家政服务?现在&#xff…...

数据增强:目标检测算法中的性能提升利器

引言 目标检测是计算机视觉领域的核心任务之一,旨在从图像或视频中识别和定位感兴趣的对象。然而,由于训练数据的局限性,目标检测模型往往面临过拟合和泛化能力不足的问题。数据增强作为一种有效的解决方案,通过增加数据多样性来…...

KVB交易平台 :市场迎来新热潮!铜价会持续上涨吗?

近期,全球铜价出现明显上涨趋势。韩国光阳LME仓库的铜库存显著下降,市场对即时需求的增加作出了积极反应。供应端的紧张和需求端的复苏共同推动了铜价的上涨。 KVB外汇 分析师们对未来铜价保持谨慎乐观态度,认为长期内铜价有望保持稳定甚至进…...

React@16.x(44)路由v5.x(9)源码(1)- path-to-regexp

目录 1,作用2,实现获取 match 对象2.1,match 对象的内容2.2,注意点2.3,实现 1,作用 之前在介绍 2.3 match 对象 时,提到了 react-router 使用第3方库 path-to-regexp 来匹配路径正则。 我们也…...

C#面:String str=new String(“a“)和String str = “a“有什么区别

String str new String(“a”)和String str “a”的区别在于对象的创建方式和内存分配方式。 字符串 str new String(“a”): 使用new关键字显式地创建了一个新的String对象。 每次执行这行代码时,都会…...

CS算法(二)—— 斜视SAR点目标仿真

SAR成像专栏目录 我们按照Cumming教授所著的《合成孔径雷达成像——算法与实现》7.6节的点目标参数进行仿真,斜视角设置为8,中心斜距改为1000km。先放最终的仿真结果: 1. 参数配置 在中心点和中心的的上下左右方向设置5个点目标 : function para=config_sar_para_cumming(…...

2024亚洲国际餐饮展览会(北京餐饮展|火锅展|预制菜展会)

2024北京餐饮展会,2024北京食材展会,2024北京火锅展会,2024北京火锅食材展会,2024北京预制菜展会,2024北京预制食材展会, 2024亚洲国际餐饮展览会(北京餐饮展|火锅展|预制菜展会) …...

【RabbitMQ问题踩坑】RabbitMQ设置手动ack后,消息队列有多条消息,只能消费一条,就不继续消费了,这是为什么 ?

现象:我发送5条消息到MQ队列中,同时,我在yml中设置的是需要在代码中手动确认,但是我把代码中的手动ack给关闭了,会出现什么情况? yml中配置,配置需要在代码中手动去确认消费者消费消息成功&…...

深度解码:需求跟踪的艺术与实战应用

文章目录 引言一、需求跟踪的定义二、需求跟踪矩阵2.1 需求跟踪矩阵包含的内容2.2 跟踪矩阵层级2.3 需求属性2.4 参考表格 三、需求跟踪的收益3.1 确保商业价值最大化3.2 满足客户期望3.3 范围管理3.4 决策支持3.5 提高效率和效果3.6 文档化和沟通3.7 变更管理3.8 测量和改进 四…...

数据结构——树的基础概念

目录 1.树的概念 2.树的相关概念 3.树的表示 (1)直接表示法 (2)双亲表示法 (3)左孩子右兄弟表示法 4.树在实际中的运用(表示文件系统的目录树结构) 1.树的概念 树是一种非线性的数据结构&#xff0…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

基础测试工具使用经验

背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

SpringAI实战:ChatModel智能对话全解

一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM&#xff0…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...