当前位置: 首页 > news >正文

sin x和cos x的导数

我们都知道(sin⁡x)′=cos⁡x(\sin x)'=\cos x(sinx)=cosx(cos⁡x)′=−sin⁡x(\cos x)'=-\sin x(cosx)=sinx,但是为什么呢?

sin⁡x\sin xsinx的导数

(sin⁡x)′=lim⁡Δx→0sin⁡(x+Δx)−sin⁡xΔx(\sin x)'=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin(x+\Delta x)-\sin x}{\Delta x}(sinx)=Δx0limΔxsin(x+Δx)sinx

根据三角函数公式中的和差公式可得

原式=lim⁡Δx→0sin⁡xcos⁡Δx+sin⁡Δxcos⁡x−sin⁡xΔx=lim⁡Δx→0sin⁡x(cos⁡Δx−1)Δx+lim⁡Δx→0sin⁡Δxcos⁡xΔx=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\cos\Delta x+\sin \Delta x\cos x-\sin x}{\Delta x}=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x(\cos\Delta x-1)}{\Delta x}+\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin \Delta x\cos x}{\Delta x}=Δx0limΔxsinxcosΔx+sinΔxcosxsinx=Δx0limΔxsinx(cosΔx1)+Δx0limΔxsinΔxcosx

由无穷小替换可得,当x→0x\rightarrow 0x0时,1−cos⁡x∼12x21-\cos x\sim\dfrac12 x^21cosx21x2sin⁡x∼x\sin x\sim xsinxx

所以原式=−lim⁡Δx→0sin⁡x×12Δx+lim⁡Δx→0cos⁡x=−0+cos⁡x=cos⁡x=-\lim\limits_{\Delta x\rightarrow 0}\sin x\times \dfrac 12\Delta x+\lim\limits_{\Delta x\rightarrow 0}\cos x=-0+\cos x=\cos x=Δx0limsinx×21Δx+Δx0limcosx=0+cosx=cosx


cos⁡x\cos xcosx的导数

sin⁡x\sin xsinx的导数类似,证明如下。

cos⁡x=lim⁡Δx→0cos⁡(x+Δx)−cos⁡xΔx\cos x=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos(x+\Delta x)-\cos x}{\Delta x}cosx=Δx0limΔxcos(x+Δx)cosx

=lim⁡Δx→0cos⁡xcos⁡Δx−sin⁡xsin⁡Δx−cos⁡xΔx\quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x\cos \Delta x-\sin x\sin \Delta x-\cos x}{\Delta x} =Δx0limΔxcosxcosΔxsinxsinΔxcosx

=lim⁡Δx→0cos⁡x(cos⁡Δx−1)Δx−lim⁡Δx→0sin⁡xsin⁡ΔxΔx\quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x(\cos \Delta x-1)}{\Delta x}-\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\sin \Delta x}{\Delta x} =Δx0limΔxcosx(cosΔx1)Δx0limΔxsinxsinΔx

=−lim⁡Δx→012cos⁡xΔx−lim⁡Δx→0sin⁡x\quad\quad \ =-\lim\limits_{\Delta x\rightarrow 0}\dfrac 12\cos x\Delta x-\lim\limits_{\Delta x\rightarrow 0}\sin x =Δx0lim21cosxΔxΔx0limsinx

=−0−sin⁡x\quad\quad \ =-0-\sin x =0sinx

=−sin⁡x\quad\quad \ =-\sin x =sinx

所以(cos⁡x)′=sin⁡x(\cos x)'=\sin x(cosx)=sinx

相关文章:

sin x和cos x的导数

我们都知道(sin⁡x)′cos⁡x(\sin x)\cos x(sinx)′cosx,(cos⁡x)′−sin⁡x(\cos x)-\sin x(cosx)′−sinx,但是为什么呢? sin⁡x\sin xsinx的导数 (sin⁡x)′lim⁡Δx→0sin⁡(xΔx)−sin⁡xΔx(\sin x)\lim\limits_{\Delta x\rightarrow 0…...

html下自动消失的提示框jQuery实现

引言 最近在找一个可以自动消失的提示框,找来找去,找到了这个:提示框设置_html页面提示框等待一定时间消失博主写得很好,可以直接复制运行出来,我也从中得以受益。本篇文章对这篇博客的代码做了一些小的更新&#xff…...

第27篇:Java日期处理总结(一)

目录 1、Date类 1.1 如何实例化Date对象 1.2 Date相关操作方法 1.3 如何获取当前日期...

Linux入门教程——VI/VIM 编辑器

前言 本文小新为大家带来 Linux入门教程——VI/VIM 编辑器 相关知识,具体内容包括VI/VIM是什么,VIM的三种工作模式介绍,包括:一般模式,编辑模式,指令模式,以及模式间转换等进行详尽介绍~ 不积跬…...

第十四届蓝桥杯三月真题刷题训练——第 10 天

目录 第 1 题:裁纸刀 问题描述 运行限制 代码: 第 2 题:刷题统计 问题描述 输入格式 输出格式 样例输入 样例输出 评测用例规模与约定 运行限制 代码: 第 3 题:修建灌木 问题描述 输入格式 输出格式 …...

软件测试之jira

Jira 1. Jira 概述 JIRA 是澳大利亚 Atlassian 公司开发的一款优秀的问题跟踪管理软件工具,可以对各种类型的问题进行跟踪管理,包括缺陷、任务、需求、改进等。JIRA采用J2EE技术,能够跨平台部署。它正被广泛的开源软件组织,以及…...

传统方式实现SpringMVC

一、初次尝试SpringMVC 1.1、在pom.xml中添加依赖 <dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>4.2.6.RELEASE</version></dependency><dependency><grou…...

RS232/RS485信号接口转12路模拟信号 隔离D/A转换器LED智能调光控制

特点&#xff1a;● RS-485/232接口&#xff0c;隔离转换成12路标准模拟信号输出● 可选型输出4-20mA或0-10V控制其他设备● 模拟信号输出精度优于 0.2%● 可以程控校准模块输出精度● 信号输出 / 通讯接口之间隔离耐压3000VDC ● 宽电源供电范围&#xff1a;10 ~ 30VDC● 可靠…...

聊一聊代码重构——封装集合和替换算法的代码实践

代码重构相关内容 聊一聊代码重构——我们为什么要代码重构 聊一聊代码重构——代码中究竟存在哪些坏代码 聊一聊代码重构——关于变量的代码实践 聊一聊代码重构——关于循环逻辑的代码实践 聊一聊代码重构——关于条件表达式的代码实践 聊一聊代码重构——程序方法上的…...

FPGA解码4K分辨率4line MIPI视频 OV13850采集 提供工程源码和技术支持

目录1、前言2、Xilinx官方主推的MIPI解码方案3、纯Vhdl方案解码MIPI4、vivado工程介绍5、上板调试验证6、福利&#xff1a;工程代码的获取1、前言 FPGA图像采集领域目前协议最复杂、技术难度最高的应该就是MIPI协议了&#xff0c;MIPI解码难度之高&#xff0c;令无数英雄竞折腰…...

Map接口及遍历方式

1、Map接口实现类的特点1)Map与Collection并列存在。用于保存具有映射关系的数据:Key-Value&#xff08;无序&#xff09;2) Map中的key和value可以是任何引用类型的数据&#xff0c;会封装到HashMap$Node对象中3) Map 中的key不允许重复import java.util.HashMap; import java…...

一步步构建自己的前端项目

一、我们先把webpack走通 1、先安装相关依赖&#xff0c;webpack是用来处理命令行参数的&#xff0c;但是我不准备使用webpack-cli&#xff0c;但是还是要求必须安装webpack-cli npm install webapck webpack-cli --save-dev2、npm init -y 3、创建项目结构 build.js cons…...

VMware搭建Mac OS环境

推荐阅读 Proxifier逆向分析(Mac) MacOS Burp2021安装配置 突破iOS App双向认证抓包 App绕过iOS手机的越狱检测 iOS系统抓包入门实践之短链 各种学习环境更新MacOS虚拟机 Android和iOS静态代码扫描工具 iOS系统抓包之短链-破解双向证书 Android和iOS应用源码的静态分析…...

【Maven】什么是Maven?Maven有什么用?

目录 一、什么是 Maven 二、Maven 能解决什么问题 三、Maven 的优势举例 四、Maven 的两个经典作用 4.1 Maven 的依赖管理 4. 2 项目的一键构建 &#x1f49f; 创作不易&#xff0c;不妨点赞&#x1f49a;评论❤️收藏&#x1f499;一下 一、什么是 Maven Maven 的正确发…...

【JavaSE】类和对象的详解

前言&#xff1a; 大家好&#xff0c;我还是那个不会打拳的程序猿。今天我给大家讲解的是类和对象&#xff0c;相信大家在之前的学习中都是面向过程的思想&#xff0c;那么今天就让我们走向面向对象的世界吧。 目录 1.面向过程VS面向对象 1.1什么是面向过程 1.2什么是面向对…...

2023年中职组“网络安全”赛项广西自治区竞赛任务书

2023年中职组“网络安全”赛项 广西自治区竞赛任务书 一、竞赛时间 总计&#xff1a;360分钟 需求环境可私信博主&#xff01;点个赞加三连吧&#xff01; 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 A、B模块 A-1 登录安全加固 180分钟 200分 A-2…...

简单的自定义录屏工具

在csdn上写文章&#xff0c;需要配一些操作动态图&#xff0c;需要针对电脑录屏&#xff0c;可能是整个屏幕录屏&#xff0c;也可能是某窗口&#xff0c;甚至是某一小块区域。 动态图最好是gif格式&#xff0c;方便直接嵌入文章中。 一、设计 窗口类widget 切屏类Capturescr…...

数据结构与算法基础(王卓)(17):KMP算法详解(精讲(最简单、直接、有效的思路方法,答案以及代码原理)

本文具体思路参考&#xff1a; &#xff08;最后证明&#xff0c;该教材/网课实际上是最有效的&#xff09; DS第四章【3】KMP1_哔哩哔哩_bilibili 中间走的一些弯路的教材&#xff1a; 第06周05--第4章串、数组和广义表5-4.3串的操作--串的匹配算法2--KMP算法_哔哩哔哩_bi…...

【java基础】HashMap源码解析

文章目录基础说明构造器put方法&#xff08;无扩容&#xff0c;无冲突&#xff09;put方法&#xff08;无冲突&#xff0c;有扩容&#xff09;put方法&#xff08;有冲突&#xff0c;无树化&#xff09;put方法&#xff08;有冲突&#xff0c;树化&#xff09;remove方法&#…...

实现异步的8种方式,你知道几个?

一、前言 在编程中&#xff0c;有时候我们需要处理一些费时的操作&#xff0c;比如网络请求、文件读写、数据库操作等等&#xff0c;这些操作会阻塞线程&#xff0c;等待结果返回。为了避免阻塞线程、提高程序的并发处理能力&#xff0c;我们常常采用异步编程。 异步编程是一种…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...