AGI|Transformer自注意力机制超全扫盲攻略,建议收藏!
一、前言
2017年,谷歌团队推出一篇神经网络的论文,首次提出将“自注意力”机制引入深度学习中,这一机制可以根据输入数据各部分重要性的不同而分配不同的权重。当ChatGPT震惊世人时,Transformer也随之进入大众视野。一夜之间,AI创业公司层出不穷,掌握算力的互联网巨头们争相推出自己的大语言模型。
这些模型都基于Transformer神经网络架构,比如ChatGPT只使用了其中的解码器,DeBERTa只使用了其编码器,Flan-UL2则编码解码全都使用。
而对于用户来说,大语言模型还是一个黑盒,用户只知道输入一些简单指令模型便会产出一些输出,这些输出可能满足用户的需求,也可能不满足,于是用户通过调整指令的方式得到不同输出的结果。从笼统、抽象的概括到指令精确的下发,这也推进了提示词工程的发展。很难评价是机器在学习人类还是人类在适应机器,亦或两者都有。
开发者的世界中可能了解得更多,比如使用LangChain或LlamaIndex构建RAG(检索增强生成)系统,使用提示词工程优化输出结果,设置temperature等各类参数控制大模型创新性等……虽然比用户更接近黑盒,但依然存在很多无法解答的问题:为什么大语言模型会有上下文的限制?为什么现阶段的模型没有长期记忆?为什么要使用Transformer作为基础?
对于科学家来说上述问题可能很好回答,但大部分表述都是一些晦涩难懂的专业名词,谈论得更多的是方向,嵌入层,层归一化,矩阵乘积……以及一堆复杂的数学公式。在学术界热热闹闹讨论AGI(通用人工智能)未来的同时,这些专业名词构建出的壁垒让普通人难以望其项背,无疑于在黑盒之上又蒙了一层神秘的面纱。

这当然不是科学家有意为之,但也从侧面反映出人工智能领域的复杂性,一个包含计算机科学、数学、认知科学、心理学等众多学科的领域要解释起来确实颇有难度。
本篇文章目的意在使用通俗语言解释这些专业名词,并通过数据流向的方式描绘“自注意力机制”在训练时的过程,但不会事无巨细地解释其中每一个细节。
二、向量
当我们谈论向量的时候,我们具体谈论的是哪一领域的‘向量’?是数学,物理学还是其他自然科学中的基本概念?
是理论数学中的定义:任何在称为向量空间的代数结构中的元素,并同时满足具有大小和方向两个性质的几何对象即可认为是向量。
还是物理领域中的定义:向量是空间中的箭头,它指向三维空间其中一点,以三元数组代表某个特定的对象,这个对象可以代表任意东西。
无论使用哪一领域的向量定义,最终都要回到一个根本性问题:如何让机器识别某一信息代表的具体意义?
对于机器而言,人类世界的语言并没有什么意义,无论是使用中文的'他',还是英文中的'he',机器能识别和处理的只能是数值,例如0,1。为了让机器更好地识别人类语言及真实世界,科学家们使用向量将文本转化为数据,使得机器可以对文本进行数学运算;向量也可以包含多种特征,如词性,上下文等,这有助于提高模型对语言的理解能力。
假设使用一个二维坐标轴将人类语言词汇分布在上面,英文的'he'和中文的'他'可能会分布在不同轴上。“番茄”和“西红柿”只是两种不同叫法,指向的是同一种植物果实,却需要占据两个向量,即使它们可能无比接近。
如果将一个二维空间升维成三维空间,'番茄'这一含义代表着三维空间的某个坐标(x,y,z),意义相近的词依旧分布在其附近。看似好像没有什么区别,但描述同一对象的方式却发生了改变。事实上向量可以是任意维度的,这取决于数据的复杂性和所需特征数量,不同维度承载的特征数量是不一样的。通俗一点讲就是:向量的维度越高,代表的含义也就越多。高维向量可以捕捉更多的细节和信息,但这也导致了计算的复杂性。

向量是一切的基础,无论是模型训练还是使用AI应用,第一步都是将输入的文本/图片/音频等信息转换为向量,一般情况下我们将这些输入/输出的向量统称 token。为了方便理解,我们暂时将一个单词对应一个向量,即一组数字。

三、嵌入矩阵
通常情况下模型会包含一个预设的词汇库,它被称为“嵌入矩阵”。以ChatGPT-3为例,这个嵌入矩阵中包含了50257个token,12288个维度,里面可以是单词或标点符号……它们的初始值随机,但将基于数据进行学习。这是故意为之,如果所有嵌入向量都初始化为相同的值,那么模型在训练时无法区分不同的输入。使用随机值可以打破均匀性,避免训练开始时的梯度相似,同时也可以避免模型陷入局部最优解。

早在Transformer出现前,将单词转化为向量已经是机器学习中常见的做法,到如今Transformer几乎成为自然语言处理,视觉处理,多模态处理的基础模型。可见将人类所有语言词汇转变为向量并不能一蹴而就,这就像拥有一座铁矿并不意味着得到好钢,但它为接下来的淬炼奠定了基础。
这非常重要,举一个3Blue1Brown提出的例子:当模型在训练阶段调整权重时,以确定不同单词将如何被嵌入向量,它们最终的嵌入向量在空间中的方向,往往具备某种语义意义。
就像在谈论向量时那样描述的,意义相近的向量会分布得较为接近。如果取[女人]和[男人]的向量之差,从一个向量的尖端指向另一个尖端,便会发现这个向量差与[父亲]和[母亲]的向量差非常相似。假设你并不知道[母亲]这一词在向量空间中的分布,但是可以通过[父亲]这一词汇加上[女人]减去[男人]的方向,然后搜寻最接近该点的词向量来找到它。

上述例子足以说明,空间中的方向能够承载语义。反复强调它的重要性,是因为嵌入矩阵中的向量不能仅仅将其视为单个单词,它编码了单词的位置信息,还结合了上下文语境。在现实世界,不同的语境下同一词也代表不同的含义,“model”这一词是指艺术领域中展示服装的人类,是指计算机领域的数据结构?还是我们现在谈论的机器学习模型?
假如对模型提出一个问题:“the greatest thinker in China is ?”
"greatest"这个词向量会被网络中各个模块拉扯,最终指向一个更具象的方向或对象。如下图中所示,上下文中的China指明了向量被拉扯的方向,最终指向的方向范围可能会包含"孔子"这一具体的向量词。

一个训练得好的注意力模块的目的就是:能计算出给初始的词向量加入什么样的向量,才能将它移动到上下文对应的具体方向上。
四、自注意力机制
本文开篇中提到过注意力机制可以按输入数据各部分重要性的不同而分配不同的权重,但在深度学习中模型的实际行为很难解释,且其多数计算都是矩阵向量乘法,注意力机制在矩阵中填满了可调的权重,这些权重由模型学习数据来进行调整,最终计算点积层归一化后得到输出的token。
自注意力的本质:

如果本文剩余篇幅只是列举公式,那么似乎很难让人理解,也违背了本文最初的承诺。这就像把向量矩阵呈现在读者面前,让读者自己计算token一样荒诞。作者将沿用上述列举的方式,尽可能避开公式的细节,抽象出机制的行为并绘制整个流程,可能尽管没有公式那么精确,但更容易帮助我们了解到底发生了什么。
在训练之初,输出文本创建向量组时,每个向量都是直接从嵌入矩阵中提取出来的。

然后这个向量组会流向三个向量矩阵:
1、Query [查询矩阵]
的维度要比嵌入矩阵小很多。它由随机向量组做初始化,具体的行为模式是从数据中习得的。从数学的角度来看它们只是在做矩阵乘积,如果抽象成一个具体的行为,这更像是对输入的单词提出一系列问题。试想一下,一个优秀的读者在读某本书籍某篇文章时,一定会对自己所读的内容提出一系列问题,这有助于快速理解内核和作者想要表达出的思想。训练也是如此,通过一系列预设的随机数值,让模型在训练中抽象出那些系统问题。

2、Key [键矩阵]
与查询矩阵相同,也会与嵌入向量相乘而产生。如果[查询矩阵]是对 token 提出一系列问题,那么[键矩阵]则代表“想要回答的结果”。衡量每个[键]与每个[查询]的匹配程度,得到的查询矩阵会与键矩阵相乘,最终得到的点积如下图所示。如果圆点越大,代表点积也就越大。用机器学习的术语来描述就是:greatest 注意到了 China 。如果按照现实意义进行概括就是:从各种问题和答案中选出匹配度最相符的。
下图源于GPT是什么?直观解释Transformer:

为了数值的稳定性,所有的点积将会除以(键-查询空间维度的平方根)得到的结果将会被softmax函数处理后乘V矩阵。
在训练过程中,示例文本经过模型处理时,模型会根据正确预测出下一次的概率高低来进行奖惩,并稍微调整各个权重。为了让训练的效率最大化,在初始化token时让它同时预测,这样一次训练样本就能提供多次训练机会。

在引入注意力机制后,这意味着不能让后词影响到前词,不能让[答案]影响到[问题],从点积矩阵中反映出来便是:左下方的数值都会影响到右上方。通常情况下,在使用softmax之前都会将左下方的数值设置为负无穷,这样通过softmax函数后它们就会都变成0,这一过程叫做"掩码"。
在注意力模式下,掩码的大小等于上下文长度的平方。扩大上下文长度则需要更多的计算资源,这就是为什么上下文长度会成为大语言模型的瓶颈所在。

如果想要将一串数字作为概率分布,那么每个值都必须介于0到1之间,并且总和为1。在深度学习中,所有的操作都是在做矩阵向量乘法,那么得出的结果并不在0到1之间,总和也不为1。Softmax 函数主要作用就是将一组任意实数转换为表示概率分布的实数据,然后让这组实数符合概率分布的特征。
“the greatest thinker in China is ?” 这个例子中最有可能输出"Confucius"一词,但人们不希望在提出同一类型问题时模型输出的都是同一结果,这可能会陷入某些局部最优解。

Temperature 参数用于控制生成文本的随机性和创造性,当该参数较大时会给低值赋予更多权重,让概率分布得更均匀一些。如果该参数较小,那么较大的数值就会更占优一些。极端情况下将该参数设置为 0,意味着所有权重都给到最大值。通过调整该参数,同一问题可能得到不同的结果,当该参数较大 时"Mencius"和"Sun Tzu"将被更容易命中。
3、Value [值矩阵]
相比查询矩阵和键矩阵,值矩阵要多个数量级。当算出点积就能让模型推断出每个词与其他哪些词有关,比如"greatest"会与"china"有关。用"chain"这个词向量乘以值矩阵便会得到一个值向量,这个向量与嵌入向量处于同一个高维空间。上文中提到过:初始的词向量加入什么样的向量,才能将它移动到上下文对应的具体方向上。

向网格中每一列中都会乘该列的对应权重 (点积*值向量),最后计算所有列的和就是那个“拉扯”向量空间中的机制,通过这个机制就能得到一个更精准的向量,编码了更丰富的上下文信息,所得到的输出 token也指向了某一范围。

五、计算过程
- 输入token,如单词,字符或其他类型。通过嵌入层被转换为词向量。
- 每个词向量分别计算查询矩阵,键矩阵和值矩阵。得到查询值,键和值向量。
- 向量q1分别与k1,k2,k3做点积运算,得到初始的注意力值at1。
- 使用softmax函数对注意力值at1进行归一化处理,得到st1。
- 最后将st1与值向量v1相乘,得到新的向量wt1。
- 将所有wt向量相加得到输出向量。
下图来源于《ChatGPT原理与架构》

自注意力机制是Transformer模型的核心组成部分,它计算输入中元素之前的权重,以捕获序列中的关键信息。通过该机制能直接对序列中任意两个元素计算出它们之间的关系,这提供了可观察性和解释性,对模型调试和优化也提供了依据。
但自注意力机制也存在局限性,如上下文问题。虽然它能有效捕捉元素之间的依赖关系,但面对极长的上下文时,计算和内存开销会变得巨大。在训练时尤其明显,通常情况下需要大量训练数据以达到最佳性能,这会增加很多成本。同时在小型数据集,比如移动端,AI嵌入式等特定领域匹配度会降低。
六、多头注意力机制
作为自注意力机制的一种扩展,多头注意力机制的主要目标是让模型能并行关注输入中多种不同类型信息。这样模型可以学习到更丰富且多元化的表达,从而提升模型能力与性能。通过增加注意力头的数量,扩大了模型的容量,使其能够处理更加复杂的任务。现在我们熟知的多模态大语言模型,既能处理图片,也能处理文本等任务。
Transformer内完整的注意力模块就是由多头注意力组成,大量并行执行这些操作,每个头都有不同的键,查询,值矩阵……虽然根据Transformer的原论文中的实验结果表明,注意力头数量为8时可以达到最佳的效果,增加到16或32时并未显著提升性能。但ChatGPT-3中每个模块内依然使用了96个注意力头,这意味着在训练过程中将会产生96种不同的注意力模式,每个注意力头都有独特的值矩阵产生不同的值向量序列……按照本文描述自注意力机制,最终会有96个向量值“拉扯”最初的嵌入向量。
多头注意力机制的参数规模较大,为了优化这些问题也提出了一系列优化策略来进行改进,比如局部多头注意力,稀疏多头注意力,分层多头注意力等。但这些不在文本讨论范围内,感兴趣的读者可以自行查阅相关资料。
注意力机制的成功的主要原因并不在于它能实现什么特定的行为,而是它的可并行性,这样使用GPU在短时间内可以进行大量计算。了解深度学习历史的读者可能会理解,仅依靠扩大模型规模就能为模型性能带来质的飞跃。
七、总结
本文详解了自注意力机制的流程,同时也对深度学习中部分专有名词进行了解释。如今Transformer模型已经在NLP领域占据了重要地位,但Transformer不仅仅只包含'注意力机制',还包含了前馈神经网络,残差连接和位置编码等。训练出一个大语言模型也不仅仅只依靠Transformer就够了,还包括了预训练,人类反馈,微调,评估等。
这也申明了人工智能领域的复杂性,虽然本篇文章不能打破黑盒一探究竟,但能掀开面纱一角也足够了。
参考资料:
1.《ChatGPT原理与架构》
2.《GPT是什么?直观解释Transformer 》
3.《直观解释注意力机制,Transformer的核心》
4.https://transformers.run/c1/transformer/
作者:王凯| 后端开发工程师
欢迎关注“神州数码云基地”公众号,回复“AI合集”领取最新整理100+AI报告合集
版权声明:文章由神州数码武汉云基地团队实践整理输出,转载请注明出处。
相关文章:
AGI|Transformer自注意力机制超全扫盲攻略,建议收藏!
一、前言 2017年,谷歌团队推出一篇神经网络的论文,首次提出将“自注意力”机制引入深度学习中,这一机制可以根据输入数据各部分重要性的不同而分配不同的权重。当ChatGPT震惊世人时,Transformer也随之进入大众视野。一夜之间&…...
QT+OpenCV在Android上实现人脸实时检测与目标检测
一、功能介绍 在当今的移动应用领域,随着技术的飞速发展和智能设备的普及,将先进的计算机视觉技术集成到移动平台,特别是Android系统中,已成为提升用户体验、拓展应用功能的关键。其中,目标检测与人脸识别作为计算机视…...
常见网络攻击方式及防御方法
1. DDOS攻击(分布式拒绝服务攻击) 概念:借助于C/S(客户端/服务器)技术,将多个计算机联合起来作为攻击平台,对一个或多个目标发动DDOS攻击,从而成倍地提高拒绝服务攻击的威力。防护方…...
使用 ESP32 实现无线对讲机功能涉及音频采集、音频传输以及音频播放等多个方面。实现无线对讲机功能的基本步骤和示例代码。
硬件准备 两个 ESP32 开发板两个 MAX9814 麦克风模块(或其他兼容的模拟麦克风模块)两个 MAX98357A DAC 模块(或其他兼容的音频放大器模块)扬声器 接线 麦克风模块 -> ESP32 ADC 引脚ESP32 DAC 引脚 -> 音频放大器模块 -&…...
SpringBoot项目,配置文件pom.xml的结构解析
pom.xml 是 Maven 项目对象模型(Project Object Model)的配置文件,它定义了 Maven 项目的基本设置和构建过程。以下是 pom.xml 文件的基本结构和一些常见元素的解析: 项目声明 (<project>): <modelVersion>: 通常设置…...
教程:Spring Boot中集成Memcached的详细步骤
教程:Spring Boot中集成Memcached的详细步骤 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 在现代应用开发中,缓存是提升性能和扩展性…...
Websocket通信实战项目(图片互传应用)+PyQt界面+python异步编程(async) (上)服务器端python实现
Rqtz : 个人主页 共享IT之美,共创机器未来 Sharing the Beauty of IT and Creating the Future of Machines Together 目录 项目背景 编辑专有名词介绍 服务器GUI展示 功能(位置见上图序号) 客户端GUI展示(h5cssjs…...
实验一 MATLAB \ Python数字图像处理初步
一、实验目的: 1.熟悉及掌握在MATLAB\Python中能够处理哪些格式图像。 2.熟练掌握在MATLAB\Python中如何读取图像。 3.掌握如何利用MATLAB\Python来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在M…...
echarts柱状选中shadow阴影背景宽度设置
使用line,宽度增大到所需要的宽度,设置下颜色透明度就行 tooltip: {trigger: axis,//把阴影的层级往下降z:-15,axisPointer: {type: line,lineStyle: {color: rgba(150,150,150,0.3),width: 44,type: solid,},}, }, series: [{type: bar,barWidth:20,//…...
ArrayBuffer 对象常见的几个用途
ArrayBuffer 在 JavaScript 中的用途广泛,主要用于处理二进制数据。 ArrayBuffer 对象、 TypedArray 视图和 DataView 视图是 JavaScript 操作二进制数据的一个接口。本文介绍ArrayBuffer 对象的常见的一些用法。 1. 网络传输二进制数据 使用方法:通过 …...
STC89C52RC单片机设计的FM收音机+自动搜台+存储电台(程序+原理图+PCB)
资料下载地址:STC89C52RC单片机设计的FM收音机自动搜台存储电台(程序原理图PCB) 1、实物图 2、部分程序 #include <reg52.h> #include "tea5767.h" #include "delay.h" #include "lcd1602.h" //K1:上一台 K2:下一…...
【若依】关闭当前标签页并跳转路由到其他页面
使用场景如:当在新增/编辑路由页面提交成功后,需要关闭当前页,并跳转回列表页。 实现代码: this.$store.dispatch("tagsView/delView", this.$route); //关闭当前页 this.$router.replace({ path: "/xxx/xxx"…...
防爆智能手机如何解决危险环境下通信难题?
在化工厂、石油行业、矿山等危险环境中,通信安全一直是难题。传统手机因不具备防爆功能,可能引发火花、爆炸等安全风险,让工作人员在关键时刻难以及时沟通。但如今,防爆智能手机的出现彻底改变了这一现状! 安全通信&am…...
软件测试最全面试题及答案整理(2024最新版)
1、你的测试职业发展是什么? 测试经验越多,测试能力越高。所以我的职业发展是需要时间积累的,一步步向着高级测试工程师奔去。而且我也有初步的职业规划,前3年积累测试经验,按如何做好测试工程师的要点去要求自己,不断…...
11 - matlab m_map地学绘图工具基础函数 - 绘制航迹、椭圆、风向玫瑰图和特定的圆形区域的有关函数及其用法
11 - matlab m_map地学绘图工具基础函数 - 绘制航迹、椭圆、风向玫瑰图和特定的圆形区域的有关函数及其用法 0. 引言1. 关于m_track2. 关于m_range_ring3. 关于m_ellipse4. 关于m_windrose5. 结语 0. 引言 本篇介绍下m_map中绘制航迹图函数(m_track)、绘…...
长安链安装及使用问题
1. 关于golang编译出错: Get “https://proxy.golang.org/chainmaker.org/chainmaker/common/v2/v/v2.2.0.mod“: dial 在网上查阅资料后发现是自己的golang版本太低(1.3一下),因为goalng在最初开发时,国内基本上都会遇到依赖下载不了的问题, 然而在1.3版本后,go…...
大学生竞赛管理系统-计算机毕业设计源码37276
大学生竞赛管理系统的设计与实现 摘 要 随着教育信息化的不断发展,大学生竞赛已成为高校教育的重要组成部分。传统的竞赛组织和管理方式存在着诸多问题,如信息不透明、效率低下、管理不便等。为了解决这些问题,提高竞赛组织和管理效率&#x…...
去中心化 RAG 先行者,KIP Protocol 如何保护数据所有权、激活 AI 资产
AI 时代,人人都应实现 KnowledgeFi 的梦想或许并不遥远,KIP Protocol 正在生动践行这一价值理念,带动去中心化数字产权的创建与盈利,面向 CryptoAI 的蓝海市场迈出创新探索的技术步伐,朝着 Web3 行业打造去中心化 AI 的…...
numpy库(python)
文章目录 1.numpy简介2.安装numpy3.ndarry : numpy库的心脏3.1 创建数组3.2数据类型3.3dtype NumPy是用Python.进行科学计算,尤其是数据分析时,所用到的一个基础库。它是大量Python 数学和科学计算包的基础,比如后面要讲到的pandas)库就用到了…...
AI技术在招聘行业的应用
大模型AI技术在招聘行业的应用正变得越来越广泛,以下是一些关键领域的应用实例。大模型AI技术在招聘行业的应用不仅提高了效率和精确度,还帮助企业在竞争激烈的人才市场中获得优势。随着技术的不断发展,预计AI将在招聘领域扮演更加重要的角色…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
vxe-table vue 表格复选框多选数据,实现快捷键 Shift 批量选择功能
vxe-table vue 表格复选框多选数据,实现快捷键 Shift 批量选择功能 查看官网:https://vxetable.cn 效果 代码 通过 checkbox-config.isShift 启用批量选中,启用后按住快捷键和鼠标批量选取 <template><div><vxe-grid v-bind"gri…...
