当前位置: 首页 > news >正文

二维舵机颜色追踪,使用树莓派+opencv+usb摄像头+两个舵机实现颜色追踪,采用pid调控

效果演示

二维云台颜色追踪

使用树莓派+opencv+usb摄像头+两个舵机实现颜色追踪,采用pid调控

import cv2
import time
import numpy as np
from threading import Thread
from servo import Servo
from pid import PID# 初始化伺服电机
pan = Servo(pin=19)
tilt = Servo(pin=16)
panAngle = 0
tiltAngle = 0
pan.set_angle(panAngle)
tilt.set_angle(tiltAngle)# 定义视频流类
class VideoStream:def __init__(self, src=0):self.stream = cv2.VideoCapture(src)self.stream.set(cv2.CAP_PROP_FRAME_WIDTH, 320)self.stream.set(cv2.CAP_PROP_FRAME_HEIGHT, 240)self.stream.set(cv2.CAP_PROP_FPS, 30)self.grabbed, self.frame = self.stream.read()self.stopped = Falsedef start(self):Thread(target=self.update, args=()).start()return selfdef update(self):while not self.stopped:self.grabbed, self.frame = self.stream.read()def read(self):return self.framedef stop(self):self.stopped = Trueself.stream.release()# 启动视频流
vs = VideoStream(src=0).start()# 设置 PID 控制器参数
pan_pid = PID(0.05, 0.01, 0.001)
tilt_pid = PID(0.05, 0.01, 0.001)
pan_pid.initialize()
tilt_pid.initialize()# 计算帧率
fps = 0
pos = (10, 20)
font = cv2.FONT_HERSHEY_SIMPLEX
height = 0.5
weight = 1
myColor = (0, 0, 255)def nothing(x):passcv2.namedWindow('PID Tuner')
cv2.createTrackbar('Pan Kp', 'PID Tuner', int(pan_pid.kP * 100), 100, nothing)
cv2.createTrackbar('Pan Ki', 'PID Tuner', int(pan_pid.kI * 100), 100, nothing)
cv2.createTrackbar('Pan Kd', 'PID Tuner', int(pan_pid.kD * 100), 100, nothing)
cv2.createTrackbar('Tilt Kp', 'PID Tuner', int(tilt_pid.kP * 100), 100, nothing)
cv2.createTrackbar('Tilt Ki', 'PID Tuner', int(tilt_pid.kI * 100), 100, nothing)
cv2.createTrackbar('Tilt Kd', 'PID Tuner', int(tilt_pid.kD * 100), 100, nothing)last_update = time.time()
update_interval = 0.1  # 控制更新频率try:while True:tStart = time.time()frame = vs.read()if frame is None:print("Failed to grab frame")breakframe = cv2.flip(frame, 1)frameHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)cv2.putText(frame, str(int(fps)) + ' FPS', pos, font, height, myColor, weight)lowerBound = np.array([0, 147, 114])upperBound = np.array([88, 255, 255])myMask = cv2.inRange(frameHSV, lowerBound, upperBound)contours, _ = cv2.findContours(myMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)if len(contours) > 0:contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True)contour = contours[0]x, y, w, h = cv2.boundingRect(contour)cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 3)# 计算误差errorX = (x + w / 2) - (320 / 2)errorY = (240 / 2) - (y + h / 2)  # 反转误差方向if time.time() - last_update > update_interval:# 获取PID参数并更新pan_pid.kP = cv2.getTrackbarPos('Pan Kp', 'PID Tuner') / 100pan_pid.kI = cv2.getTrackbarPos('Pan Ki', 'PID Tuner') / 100pan_pid.kD = cv2.getTrackbarPos('Pan Kd', 'PID Tuner') / 100tilt_pid.kP = cv2.getTrackbarPos('Tilt Kp', 'PID Tuner') / 100tilt_pid.kI = cv2.getTrackbarPos('Tilt Ki', 'PID Tuner') / 100tilt_pid.kD = cv2.getTrackbarPos('Tilt Kd', 'PID Tuner') / 100panAdjustment = pan_pid.update(errorX, sleep=0)tiltAdjustment = tilt_pid.update(errorY, sleep=0)panAngle += panAdjustmenttiltAngle += tiltAdjustment# 限制角度范围panAngle = max(-90, min(panAngle, 120))tiltAngle = max(-90, min(tiltAngle, 90))# 设置伺服电机角度pan.set_angle(panAngle)tilt.set_angle(tiltAngle)last_update = time.time()# 仅在图形环境中显示图像窗口try:cv2.imshow('Camera', frame)cv2.imshow('Mask', myMask)except cv2.error as e:print(f"OpenCV error: {e}")if cv2.waitKey(1) == ord('q'):breaktEnd = time.time()loopTime = tEnd - tStartfps = .9 * fps + .1 * (1 / loopTime)finally:vs.stop()cv2.destroyAllWindows()

在相同文件路径下创建一个名为pid.py的文件

# pid.py
# -*- coding: UTF-8 -*-
# 调用必需库
import timeclass PID:def __init__(self, kP=1, kI=0, kD=0):# 初始化参数self.kP = kPself.kI = kIself.kD = kDdef initialize(self):# 初始化当前时间和上一次计算的时间self.currTime = time.time()self.prevTime = self.currTime# 初始化上一次计算的误差self.prevError = 0# 初始化误差的比例值,积分值和微分值self.cP = 0self.cI = 0self.cD = 0def update(self, error, sleep=0.2):# 暂停time.sleep(sleep)# 获取当前时间并计算时间差self.currTime = time.time()deltaTime = self.currTime - self.prevTime# 计算误差的微分deltaError = error - self.prevError# 比例项self.cP = error# 积分项self.cI += error * deltaTime# 微分项self.cD = (deltaError / deltaTime) if deltaTime > 0 else 0# 保存时间和误差为下次更新做准备self.prevTime = self.currTimeself.prevError = error# 返回输出值return sum([self.kP * self.cP,self.kI * self.cI,self.kD * self.cD])def set_Kp(self, kP):self.kP = kPdef set_Ki(self, kI):self.kI = kIdef set_Kd(self, kD):self.kD = kD

在相同文件路径下创建一个名为servo.py的文件

import pigpio
from time import sleep
import subprocess# Start the pigpiod daemon
result = None
status = 1
for x in range(3):p = subprocess.Popen('sudo pigpiod', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)result = p.stdout.read().decode('utf-8')status = p.poll()if status == 0:breaksleep(0.2)
if status != 0:print(status, result)class Servo():MAX_PW = 1250  # 0.5/20*100MIN_PW = 250   # 2.5/20*100_freq = 50     # 50 Hz, 20msdef __init__(self, pin, min_angle=-90, max_angle=90):self.pi = pigpio.pi()self.pin = pinself.pi.set_PWM_frequency(self.pin, self._freq)self.pi.set_PWM_range(self.pin, 10000)self.angle = 0self.max_angle = max_angleself.min_angle = min_angleself.pi.set_PWM_dutycycle(self.pin, 0)def set_angle(self, angle):if angle > self.max_angle:angle = self.max_angleelif angle < self.min_angle:angle = self.min_angleself.angle = angleduty = self.map(angle, -90, 90, 250, 1250)self.pi.set_PWM_dutycycle(self.pin, duty)def get_angle(self):return self.angledef stop(self):self.pi.set_PWM_dutycycle(self.pin, 0)self.pi.stop()def map(self, x, in_min, in_max, out_min, out_max):return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_minif __name__ == '__main__':pan = Servo(pin=13, max_angle=90, min_angle=-90)tilt = Servo(pin=12, max_angle=30, min_angle=-90)panAngle = 0tiltAngle = 0pan.set_angle(panAngle)tilt.set_angle(tiltAngle)sleep(1)while True:for angle in range(0, 90, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(90, -90, -1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(-90, 0, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)

相关文章:

二维舵机颜色追踪,使用树莓派+opencv+usb摄像头+两个舵机实现颜色追踪,采用pid调控

效果演示 二维云台颜色追踪 使用树莓派opencvusb摄像头两个舵机实现颜色追踪&#xff0c;采用pid调控 import cv2 import time import numpy as np from threading import Thread from servo import Servo from pid import PID# 初始化伺服电机 pan Servo(pin19) tilt Serv…...

c进阶篇(四):内存函数

内存函数以字节为单位更改 1.memcpy memcpy 是 C/C 中的一个标准库函数&#xff0c;用于内存拷贝操作。它的原型通常定义在 <cstring> 头文件中&#xff0c;其作用是将一块内存中的数据复制到另一块内存中。 函数原型&#xff1a;void *memcpy(void *dest, const void…...

新手入门:无服务器函数和FaaS简介

无服务器&#xff08;Serverless&#xff09;架构的价值在于其成本效益、弹性和扩展性、简化的开发和部署流程、高可用性和可靠性以及使开发者能够专注于业务逻辑。通过自动化资源调配和按需计费&#xff0c;无服务器架构能够降低成本并适应流量变化&#xff0c;同时简化开发流…...

基于Transformer的端到端的目标检测 | 读论文

本文正在参加 人工智能创作者扶持计划 提及到计算机视觉的目标检测&#xff0c;我们一般会最先想到卷积神经网络&#xff08;CNN&#xff09;&#xff0c;因为这算是目标检测领域的开山之作了&#xff0c;在很长的一段时间里人们都折服于卷积神经网络在图像处理领域的优势&…...

6.8应用进程跨网络通信

《计算机网络》第7版&#xff0c;谢希仁 理解socket通信...

redis布隆过滤器原理及应用场景

目录 原理 应用场景 优点 缺点 布隆过滤器&#xff08;Bloom Filter&#xff09;是一种空间效率很高的随机数据结构&#xff0c;它利用位数组和哈希函数来判断一个元素是否存在于集合中。 原理 数据结构&#xff1a; 位数组&#xff1a;一个由0和1组成的数组&#xff0c;初始…...

vue+openlayers之几何图形交互绘制基础与实践

文章目录 1.实现效果2.实现步骤3.示例页面代码3.基本几何图形绘制的关键代码 1.实现效果 绘制点、线、多边形、圆、正方形、长方形 2.实现步骤 引用openlayers开发库。加载天地图wmts瓦片地图。在页面上添加几何图形绘制的功能按钮&#xff0c;使用下拉列表&#xff08;sel…...

「多模态大模型」解读 | 突破单一文本模态局限

编者按&#xff1a;理想状况下&#xff0c;世界上的万事万物都能以文字的形式呈现&#xff0c;如此一来&#xff0c;我们似乎仅凭大语言模型&#xff08;LLMs&#xff09;就能完成所有任务。然而&#xff0c;理想很丰满&#xff0c;现实很骨感——数据形态远不止文字一种&#…...

Redis深度解析:核心数据类型与键操作全攻略

文章目录 前言redis数据类型string1. 设置单个字符串数据2.设置多个字符串类型的数据3.字符串拼接值4.根据键获取字符串的值5.根据多个键获取多个值6.自增自减7.获取字符串的长度8.比特流操作key操作a.查找键b.设置键值的过期时间c.查看键的有效期d.设置key的有效期e.判断键是否…...

C语言 指针和数组——指针的算术运算

目录 指针的算术运算 指针加上一个整数 指针减去一个整数 指针相减 指针的关系比较运算 小结 指针的算术运算 指针加上一个整数 指针减去一个整数 指针相减 指针的关系比较运算 小结  指针变量 – 指针类型的变量&#xff0c;保存地址型数据  指针变量与其他类型…...

[C++][CMake][CMake基础]详细讲解

目录 1.CMake简介2.大小写&#xff1f;3.注释1.注释行2.注释块 4.日志 1.CMake简介 CMake是一个项目构建工具&#xff0c;并且是跨平台的 问题 – 解决 如果自己动手写Makefile&#xff0c;会发现&#xff0c;Makefile通常依赖于当前的编译平台&#xff0c;而且编写Makefile的…...

CCD技术指标

CCD尺寸&#xff0c;即摄象机靶面。原多为1/2英寸&#xff0c;现在1/3英寸的已普及化&#xff0c;1/4英寸和1/5英寸也已商品化。CCD像素&#xff0c;是决定了显示图像的清晰程度&#xff0c;。CCD是由面阵感光元素组成&#xff0c;每一个元素称为像素&#xff0c;像素越多&…...

SpringBoot系列——使用Spring Cache和Redis实现查询数据缓存

文章目录 1. 前言2. 缓存2.1 什么是缓存2.2 使用缓存的好处2.3 缓存的成本2.4 Spring Cache和Redis的优点 3. Spring Cache基础知识3.1 Spring Cache的核心概念3.2 Spring Cache的注解3.2.1 SpEL表达式3.2.2 Cacheable3.2.3 CachePut3.2.4 CacheEvict 4. 实现查询数据缓存4.1 准…...

【算法】(C语言):冒泡排序、选择排序、插入排序

冒泡排序 从第一个数据开始到第n-1个数据&#xff0c;依次和后面一个数据两两比较&#xff0c;数值小的在前。最终&#xff0c;最后一个数据&#xff08;第n个数据&#xff09;为最大值。从第一个数据开始到第n-2个数据&#xff0c;依次和后面一个数据两两比较&#xff0c;数值…...

iOS项目怎样进行二进制重排

什么是二进制重排 &#xff1f; 在iOS项目中&#xff0c;二进制重排&#xff08;Binary Reordering 或者 Binary Rearrangement&#xff09;是一种优化技术&#xff0c;主要目的是通过重新组织应用程序的二进制文件中的代码和数据段&#xff0c;来提高应用程序的性能&#xff…...

CentOS中使用SSH远程登录

CentOS中使用SSH远程登录 准备工作SSH概述SSH服务的安装与启动建立SSH连接SSH配置文件修改SSH默认端口SSH文件传输 准备工作 两台安装CentOS系统的虚拟机 客户机&#xff08;192.168.239.128&#xff09; 服务器&#xff08;192.168.239.129&#xff09; SSH概述 Secure S…...

spring @Autowire注解作用

终于有人把Autowired注解讲清楚了&#xff0c;赞&#xff01;&#xff01;&#xff01;_autowired-CSDN博客...

密码学原理精解【5】

这里写目录标题 移位密码概述代码 希尔密码( Z 256 Z_{256} Z256​)待加密长度被3整除待加密长度不一定被3整除加解密文件 移位密码 概述 以 z 26 运算为例 , k 为密钥 加密&#xff1a; e k ( x ) ( x k ) m o d 26 解密&#xff1a; d k ( x ) ( x − k ) m o d 26 以z_{…...

Unity3D 资源管理YooAsset原理分析与详解

引言 Unity3D 是一款广泛应用于游戏开发、虚拟现实&#xff08;VR&#xff09;、增强现实&#xff08;AR&#xff09;等领域的强大游戏开发引擎。在开发过程中&#xff0c;资源管理是一项至关重要的任务&#xff0c;它直接影响到游戏的性能和用户体验。YooAsset 是一个基于 Un…...

npm install puppeteer 报错 npm ERR! PUPPETEER_DOWNLOAD_HOST is deprecated解决办法

npm install puppeteer 报错如下&#xff1a; npm ERR! PUPPETEER_DOWNLOAD_HOST is deprecated. Use PUPPETEER_DOWNLOAD_BASE_URL instead. npm ERR! Error: ERROR: Failed to set up Chrome v126.0.6478.126! Set "PUPPETEER_SKIP_DOWNLOAD" env variable to sk…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...