图像增强及运算篇之图像掩膜直方图和HS直方图
一.图像掩膜直方图
如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算。假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#读取图像
img = cv2.imread('luo.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#设置掩膜
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:300] = 255
masked_img = cv2.bitwise_and(img, img, mask=mask)
#图像直方图计算
hist_full = cv2.calcHist([img], [0], None, [256], [0,256]) #通道[0]-灰度图
#图像直方图计算(含掩膜)
hist_mask = cv2.calcHist([img], [0], mask, [256], [0,256])
plt.figure(figsize=(8, 6))
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#原始图像
plt.subplot(221)
plt.imshow(img_rgb, 'gray')
plt.axis('off')
plt.title("(a)原始图像")
#绘制掩膜
plt.subplot(222)
plt.imshow(mask, 'gray')
plt.axis('off')
plt.title("(b)掩膜")
#绘制掩膜设置后的图像
plt.subplot(223)
plt.imshow(masked_img, 'gray')
plt.axis('off')
plt.title("(c)图像掩膜处理")
#绘制直方图
plt.subplot(224)
plt.plot(hist_full)
plt.plot(hist_mask)
plt.title("(d)直方图曲线")
plt.xlabel("x")
plt.ylabel("y")
plt.show()
其运行结果如图1所示,它使用了一个200×200像素的掩膜进行实验。其中图1(a)表示原始图像,图1(b)表示200×200像素的掩膜,图1©表示原始图像进行掩膜处理,图1(d)表示直方图曲线,蓝色曲线为原始图像的灰度值直方图分布情况,绿色波动更小的曲线为掩膜直方图曲线。

二.图像HS直方图
为了刻画图像中颜色的直观特性,常常需要分析图像的HSV空间下的直方图特性。HSV空间是由色调(Hue)、饱和度(Saturation)、以及亮度(Value)构成,因此在进行直方图计算时,需要先将源RGB图像转化为HSV颜色空间图像,然后将对应的H和S通道进行单元划分,再其二维空间上计算相对应直方图,再计算直方图空间上的最大值并归一化绘制相应的直方图信息,从而形成色调-饱和度直方图(或H-S直方图)。该直方图通常应用在目标检测、特征分析以及目标特征跟踪等场景[1-2]。
由于H和S分量与人感受颜色的方式是紧密相连,V分量与图像的彩色信息无关,这些特点使得HSV模型非常适合于借助人的视觉系统来感知彩色特性的图像处理算法。
下面的代码是具体的实现代码,使用matplotlib.pyplot库中的imshow()函数来绘制具有不同颜色映射的2D直方图。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('luo.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#图像HSV转换
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
#计算H-S直方图
hist = cv2.calcHist(hsv, [0,1], None, [180,256], [0,180,0,256])
#原始图像
plt.figure(figsize=(8, 6))
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.title("(a)"), plt.axis('off')
#绘制H-S直方图
plt.subplot(122), plt.imshow(hist, interpolation='nearest'), plt.title("(b)")
plt.xlabel("x"), plt.ylabel("y")
plt.show()
图2(a)表示原始输入图像,图2(b)是原图像对应的彩色直方图,其中X轴表示饱和度(S),Y轴表示色调(H)。在直方图中,可以看到H=140和S=130附近的一些高值,它对应于艳丽的色调。

三.直方图判断白天黑夜
接着讲述一个应用直方图的案例,通过直方图来判断一幅图像是黑夜或白天。常见的方法是通过计算图像的灰度平均值、灰度中值或灰度标准差,再与自定义的阈值进行对比,从而判断是黑夜还是白天[3-4]。
- 灰度平均值:该值等于图像中所有像素灰度值之和除以图像的像素个数。
- 灰度中值:对图像中所有像素灰度值进行排序,然后获取所有像素最中间的值,即为灰度中值。
- 灰度标准差:又常称均方差,是离均差平方的算术平均数的平方根。标准差能反映一个数据集的离散程度,是总体各单位标准值与其平均数离差平方的算术平均数的平方根。如果一幅图看起来灰蒙蒙的, 那灰度标准差就小;如果一幅图看起来很鲜艳,那对比度就很大,标准差也大。
下面的代码是计算灰度“Lena”图的灰度平均值、灰度中值和灰度标准差。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#函数: 获取图像的灰度平均值
def fun_mean(img, height, width):sum_img = 0for i in range(height):for j in range(width):sum_img = sum_img + int(img[i,j])mean = sum_img / (height * width)return mean
#函数: 获取中位数
def fun_median(data):length = len(data)data.sort()if (length % 2)== 1: z = length // 2y = data[z]else:y = (int(data[length//2]) + int(data[length//2-1])) / 2return y
#读取图像
img = cv2.imread('lena-hd.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#计算图像的灰度平均值
mean = fun_mean(grayImage, height, width)
print("灰度平均值:", mean)
#计算图像的灰度中位数
value = grayImage.ravel() #获取所有像素值
median = fun_median(value)
print("灰度中值:", median)
#计算图像的灰度标准差
std = np.std(value, ddof = 1)
print("灰度标准差", std)
其运行结果如图3所示,图3(a)为原始图像,图3(b)为处理结果。其灰度平均值为123,灰度中值为129,灰度标准差为48.39。

下面讲解另一种用来判断图像是白天还是黑夜的方法,其基本步骤如下:
- (1)读取原始图像,转换为灰度图,并获取图像的所有像素值;
- (2)设置灰度阈值并计算该阈值以下的像素个数。比如像素的阈值设置为50,统计低于50的像素值个数;
- (3)设置比例参数,对比该参数与低于该阈值的像素占比,如果低于参数则预测为白天,高于参数则预测为黑夜。比如该参数设置为0.8,像素的灰度值低于阈值50的个数占整幅图像所有像素个数的90%,则认为该图像偏暗,故预测为黑夜;否则预测为白天。
具体实现的代码如下所示。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#函数: 判断黑夜或白天
def func_judge(img):#获取图像高度和宽度height = grayImage.shape[0]width = grayImage.shape[1]piexs_sum = height * widthdark_sum = 0 #偏暗像素个数dark_prop = 0 #偏暗像素所占比例for i in range(height):for j in range(width):if img[i, j] < 50: #阈值为50dark_sum += 1#计算比例print(dark_sum)print(piexs_sum)dark_prop = dark_sum * 1.0 / piexs_sum if dark_prop >=0.8:print("This picture is dark!", dark_prop)else:print("This picture is bright!", dark_prop)
#读取图像
img = cv2.imread('day.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#计算256灰度级的图像直方图
hist = cv2.calcHist([grayImage], [0], None, [256], [0,255])
#判断黑夜或白天
func_judge(grayImage)
#显示原始图像和绘制的直方图
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.axis('off'), plt.title("(a)")
plt.subplot(122), plt.plot(hist, color='r'), plt.xlabel("x"), plt.ylabel("y"), plt.title("(b)")
plt.show()
第一张测试图输出的结果如图4所示,其中图4(a)为原始图像,图4(b)为对应直方图曲线。

最终输出结果为“(‘This picture is bright!’, 0.010082704388303882)”,该预测为白天。

第二张测试图输出的结果如图6所示,其中图6(a)为原始图像,图6(b)为对应直方图曲线。

最终输出结果为“(‘This picture is dark!’, 0.8511824175824175)”,该预测为黑夜。

四.总结
本章主要讲解图像直方图相关知识点,包括掩膜直方图和HS直方图,并通过直方图判断黑夜与白天,通过案例分享直方图的实际应用。希望对您有所帮助,后续将进入图像增强相关知识点
相关文章:
图像增强及运算篇之图像掩膜直方图和HS直方图
一.图像掩膜直方图 如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算。假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示。 # -*- codi…...
Python商务数据分析知识专栏(六)——Python数据分析的应用④Python数据分析实训
Python商务数据分析知识专栏(六)——Python数据分析的应用④Python数据分析实训 Python数据分析实训一.iris数据处理实训1.1 拓展学习资料&Python环境介绍1.2 读取数据&修改列名称1.3 以PythonConsole方式执行代码1.4 缺失值处理1.5 重置索引 二…...
【Python机器学习】处理文本数据——将文本数据表示为词袋
用于机器学习的文本有一种最简单的方法,也是最有效且最常用的方法,就是使用词袋表示。使用这种表示方法时,我们舍弃了输入文本中的大部分结构,比如章节、段落、句子和格式,只计算语料库中,只计算语料库中每…...
论文写作全攻略:Kimi辅助下的高效学术写作技巧
学境思源,一键生成论文初稿: AcademicIdeas - 学境思源AI论文写作 完成论文写作是一个多阶段的过程,涉及到不同的任务和技能。以下是按不同分类总结的向Kimi提问的prompt,以帮助你在论文写作过程中取得成功: 1. 选题与…...
通证经济重塑经济格局
在数字化转型的全球浪潮中,通证经济模式犹如一股新兴力量,以其独特的价值传递与共享机制,重塑着经济格局,引领我们步入数字经济的新纪元。 通证,作为这一模式的核心,不仅是权利与权益的数字化凭证…...
linux - cp 命令
问:cp -r ./src/. ./dst 与 cp -r ./src/* ./dst 有什么区别? 1.隐藏文件和目录:cp -r ./src/* ./dst 不会复制隐藏文件和目录。cp -r ./src/. ./dst 会复制所有文件和目录,包括隐藏文件和目录。 2.通配符和当前目录:* 是一个通…...
基于Qt实现的PDF阅读、编辑工具
记录一下实现pdf工具功能 语言:c、qt IDE:vs2017 环境:win10 一、功能演示: 二、功能介绍: 1.基于saribbon主体界面框架,该框架主要是为了实现类似word导航项 2.加载PDF放大缩小以及预览功能 3.pdf页面跳转…...
Linux 内核 GPIO 用户空间接口
文章目录 Linux 内核 GPIO 接口旧版本方式:sysfs 接口新版本方式:chardev 接口 gpiod 库及其命令行gpiod 库的命令行gpiod 库函数的应用 GPIO(General Purpose Input/Output,通用输入/输出接口),是微控制器…...
Hive数据倾斜--处理方法
1. 什么是数据倾斜? 在分布式计算场景下,大量的数据集中在某一个节点而导致一个任务的执行时间变长。而大量的节点只处理了小部分的数据,大数据组件处理海量数据的特点就是不患多,而患不均。 2. 怎么发现任务出现了数据倾斜现象 …...
k8s流控平台apiserver详解
一、简单理解认识apiserver 1.主要功能 认证 鉴权 准入 mutating validating admission 限流 2.概念 apiserver保护etcd,缓存机制,有缓存直接返回,没缓存再去查看etcd,apiserver是担任和其他平台同信并认证 3.访问控制概览…...
unity对于文件夹的操作
1、获取目标文件夹内所有文件夹 string[] directories Directory.GetDirectories(Path);for (int i 0; i < directories.Length; i){print(directories[i]);}2、获取目标文件夹内指定文件 public List<string> GetAllTxt(string path){//只获取文件名string[] files…...
[Redis]哨兵机制
哨兵机制概念 在传统主从复制机制中,会存在一些问题: 1. 主节点发生故障时,进行主备切换的过程是复杂的,需要人工参与,导致故障恢复时间无法保障。 2. 主节点可以将读压力分散出去,但写压力/存储压力是无法…...
Vue3--Watch、Watcheffect、Computed的使用和区别
Vue3–Watch、Watcheffect、Computed的使用和区别 一、watch 1.功能 watch 用于监听响应式数据的变化,并在数据变化时执行特定的回调函数。适合在响应式数据变化时执行异步操作或复杂逻辑。 2.主要特点 指定数据监听:可以精确地监听一个或多个响应式…...
hive调优原理详解:案例解析参数配置(第17天)
系列文章目录 一、Hive常问面试函数(掌握) 二、Hive调优如何配置(重点) 文章目录 系列文章目录前言一、Hive函数(掌握)11、JSON数据处理12、炸裂函数13、高频面试题13.1 行转列13.2 列转行 14、开窗函数&a…...
华为机试HJ15求int型正整数在内存中存储时1的个数
华为机试HJ15求int型正整数在内存中存储时1的个数 题目: 输入一个 int 型的正整数,计算出该 int 型数据在内存中存储时 1 的个数。 数据范围:保证在 32 位整型数字范围内 想法: 将输入的十进制数转为二进制,遍历记…...
NLP - Softmax与层次Softmax对比
Softmax Softmax是神经网络中常用的一种激活函数,用于多分类任务。Softmax函数将未归一化的logits转换为概率分布。公式如下: P ( y i ) e z i ∑ j 1 N e z j P(y_i) \frac{e^{z_i}}{\sum_{j1}^{N} e^{z_j}} P(yi)∑j1Nezjezi 其中&#…...
HttpServer内存马
HttpServer内存马 基础知识 一些基础的方法和类 HttpServer:HttpServer主要是通过带参的create方法来创建,第一个参数InetSocketAddress表示绑定的ip地址和端口号。第二个参数为int类型,表示允许排队的最大TCP连接数,如果该值小…...
51单片机-让一个LED灯闪烁、流水灯(涉及:自定义单片机的延迟时间)
目录 设置单片机的延迟(睡眠)函数查看单片机的时钟频率设置系统频率、定时长度、指令集 完整代码生成HEX文件下载HEX文件到单片机流水灯代码 (自定义延迟时间) 设置单片机的延迟(睡眠)函数 查看单片机的时钟频率 检测前单片机必…...
MYSQL原理、设计与应用
概述 数据库(Database,DB)是按照数据结构来组织、存储和管理数据的仓库,其本身可被看作电子化的文件柜,用户可以对文件中的数据进行增删改查等操作。 数据库系统是指在计算机系统中引入数据库后的系统,除了数据库,还…...
flask项目部署总结
这个部署的时候要用虚拟环境,cd进项目文件夹 python3 -m venv myenv source myenv/bin/activate激活 之后就安装一些库包之类的,(flask,requests,bs4,等等) 最重要的是要写.flaskenv文件并且pip install 一个能运行…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
