基于卷积神经网络的立体视频编码质量增强方法_余伟杰
基于卷积神经网络的立体视频编码质量增强方法_余伟杰
- 提出的基于TSAN的合成视点质量增强方法
- 全局信息提取流
- 像素重组
- 局部信息提取流
- 多尺度空间注意力机制
- 提出的基于RDEN的轻量级合成视点质量增强方法
- 特征蒸馏注意力块
- 轻量级多尺度空间注意力机制
- 概念
- 扭曲失真
- 孔洞问题
- 失真和伪影
提出的基于TSAN的合成视点质量增强方法
提出的网络包含两个模块:特征提取模块和重建模块。
为了从低质量合成视点中提取局部和全局信息,特征提取模块中提出了两条信息流,分别为局部信息提取流和全局信息提取流。
随着网络层数的增长,提取的特征在传输的过程中可能消失,这会降低网络模型的表达能力,为了提升特征的有效性和复用性,受人眼视觉系统的启发,在局部信息提取流中提出了一种多尺度残差注意力块
全局信息提取流
基于单一信息流的神经网络缺乏全局信息,全局信息可以将合成视点视作整体以概括整个对象,所以网络的学习能力受到限制。
通过使用全局信息,更多的上下文信息被学习到,从而帮助网络消除低质量合成视点中出现的扭曲失真。
首先,将低质量合成视点图下采样为子块,接着将这些字块送入12个完全相同的残差块(Residual Block,RB)中以提取特征,最后,通过一个上采样层反转下采样过程。为了在建模能力和训练速度上做到平衡,下采样和上采样因子被设置为2。
对于下采样过程,本文网络中使用了像素逆重组(pixel-unshuffle)层。不同于池化,步长为2的卷积以及双线性插值方法,pixel-unshuffle操作在下采样过程中不会造成任何的信息丢失,其通过将空间特征重新排列为通道来获得下采样的子图像。
此外,pixel-unshuffle操作不但可以扩大感受野,还可以降低显存使用率。
像素逆重组(pixel-unshuffle)
像素重组
为了将两条信息流中的特征级联起来,全局信息流的输出特征需要上采样至原始大小,由于像素重组(pixel-shuffle)操作l54生成更多真实细节信息,所以本文上采样使用pixel-shuffle操作。pixel-shuffle通过使用卷积层生成多个通道,然后将其重塑为高级特征,一个2倍pixel-shuffle操作的例子如图3-6所示
从图中可以看出,其输入特征图尺寸为W×Hx C,首先通过一次卷积操作将输入尺寸转变为WxH×4C,接着通过重塑操作将特征图尺寸转变为2W×2H ×C。
局部信息提取流
。由于局部特征之间的相关性很小,并且图像中存在大量的局部信息,因此学习更多的局部信息有助于恢复合成视点的质量。提出的局部信息提取流的结构如图3-7所示
受 HVS 的启发,本文提出了一种新颖的多尺度空间注意力机制,该机制被集成到MSRB中,以利用更多有用的特征信息来增强低质量的合成视点效果。通过从空间维度考虑特征之间的相互依赖性,特征图中的关键信息可以被提取。
此外,为了提高结果的准确性,将原始块中使用的激活函数ReLU替换为PReLU
多尺度空间注意力机制
本文提出了一种多尺度空间注意机制,通过合并多个尺度的感受野以更好地在空间域中学习特征之间的关系。在提出的多尺度空间注意机制中,较大的感受野对于引导网络学习孔洞,而较小的感受野则更适合于提取背景特征,所提出的多尺度空间注意机制的结构如图3-8所示。
提出的基于RDEN的轻量级合成视点质量增强方法
特征蒸馏注意力块
多尺度残差注意力块可以充分利用特征信息增强低质量合成视点的效果,但由于块中使用不同大小的卷积核共享和重用信息,使得网络存在冗余参数,计算不够灵活和高效,有进一步提升的空间。
为了降低模型复杂度,同时保证模型特征提取的性能,文献[6!提出了残差特征蒸馏块(Residual Feature Distillation Block,RFDB),通过通道分离和特征蒸馏的方式显著降低参数量。
轻量级多尺度空间注意力机制
提出了轻量级多尺度空间注意力机制,其结构如图4-3所示。首先通过一个1×1的卷积进行降维,以减少通道数,然后采用步长为2的跨步卷积和最大池化操作减少空间尺寸,接着采用跳跃连接的方式串联三个3×3卷积层,以模拟3×3,5×5和7×7的多尺度卷积核。由于开始采用了池化操作,与之对应,添加了上采样层以恢复空间尺寸,此外,采用了1×1的卷积以恢复同通道尺寸,通过 sigmoid激活函数得到2D空间注意力图,以计算特征图中被强调的部分。最后,学习到的权重W被用于自适应地调整输入特征图fwxwxc。整个注意
概念
扭曲失真
在 DIBR操作过程中,不正确的深度值可能会使合成视点中的位置发生移动,这种情况被称为扭曲失真。
孔洞问题
参考视点中被前景物体遮盖的区域在合成视点变得可见,这导致了孔洞问题。
失真和伪影
同时纹理视频在视频压缩后会发生几何形变,引入多种失真和伪影。
相关文章:

基于卷积神经网络的立体视频编码质量增强方法_余伟杰
基于卷积神经网络的立体视频编码质量增强方法_余伟杰提出的基于TSAN的合成视点质量增强方法全局信息提取流像素重组局部信息提取流多尺度空间注意力机制提出的基于RDEN的轻量级合成视点质量增强方法特征蒸馏注意力块轻量级多尺度空间注意力机制概念扭曲失真孔洞问题失真和伪影提…...

【2023unity游戏制作-mango的冒险】-3.基础动作和动画API实现
👨💻个人主页:元宇宙-秩沅 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 秩沅 原创 收录于专栏:unity游戏制作 ⭐mango的基础动作动画的添加⭐ 文章目录⭐mango的基础动作动画的添加⭐…...
跨域的几种解决方案?
1-jsonp 【前端后端实现】jsonp: 利用 <script> 标签没有跨域限制的漏洞,网页可以得到从其他来源动态产生的 JSON 数据。JSONP请求一定需要对方的服务器做支持才可以。JSONP优点是简单兼容性好,可用于解决主流浏览器的跨域数据访问的问题。缺点是仅…...

2022年山东省职业院校技能大赛网络搭建与应用赛项正式赛题
2022年山东省职业院校技能大赛 网络搭建与应用赛项 第二部分 网络搭建与安全部署&服务器配置及应用 竞赛说明: 一、竞赛内容分布 竞赛共分二个模块,其中: 第一模块:网络搭建及安全部署项目 第二模块:服务…...

【JUC并发编程】ArrayBlockingQueue和LinkedBlockingQueue源码2分钟看完
文章目录1、BlockingQueue1)接口方法2)阻塞队列分类2、ArrayBlockingQueue1)构造函数2)put()入队3)take()出队3、LinkedBlockingQueue1)构造函数2)put()入队3)take()出队1、Blocking…...

GitHub个人资料自述与管理主题设置
目录 关于您的个人资料自述文件 先决条件 添加个人资料自述文件 删除个人资料自述文件 管理主题设置 补充:建立一个空白文件夹 关于您的个人资料自述文件 可以通过创建个人资料 README,在 GitHub.com 上与社区分享有关你自己的信息。 GitHub 在个…...
Express篇-连接mysql
创建数据库配置文件config/sqlconfig.jsconst sqlconfig {host: localhost, // 连接地址user: root, //用户名password: ****, //密码port: 3306 , //端口号database: mysql01_dbbooks //数据库名 } module.exports sqlconfig封装数据库管理工具 utils/mysqlUtils.…...

win10 安装rabbitMQ详细步骤
win10 安装rabbitMQ详细步骤 win10 安装rabbitMQ详细步骤win10 安装rabbitMQ详细步骤一、下载安装程序二、安装配置erlang三、安装rabbitMQ四、验证初始可以通过用户名:guest 密码guest来登录。报错:安装RabbitMQ出现Plugin configuration unchanged.问题…...

【成为架构师课程系列】一线架构师:6个经典困惑及其解法
目录 一线架构师:6个经典困惑及其解法 多阶段还是多视图? 内置最佳实践 架构方法论:3个阶段,一个贯穿 Pre-architecture阶段:ADMEMS矩阵方法 Conceptual Architecture阶段:重大需求塑造做概念架构 Refined Architecture…...

光耦合器的定义与概述
光耦合器或光电耦合器是一种电子元件,基本上充当具有不同电压电平的两个独立电路之间的接口。光耦合器是可在输入和输出源之间提供电气隔离的常用元件。它是一个 6 引脚器件,可以有任意数量的光电探测器。 在这里,光源发出的光束作为输入和输…...

谷粒商城--品牌管理详情
目录 1.简单上传测试 2.Aliyun Spring Boot OSS 3.模块mall-third-service 4.前端 5.数据校验 6.JSR303数据校验 7.分组校验功能 8.自定义校验功能 9.完善代码 1.简单上传测试 OSS是对象存储服务,有什么用呢?把图片存储到云服务器上能让所有人…...

stack、queue和priority_queue
目录 一、栈(stack) 1.stack的使用 2.容器适配器 3.stack的模拟实现 二、队列(queue) 1.queue的使用 2.queue的模拟实现 三、双端队列(deque) 1.vector,list的优缺点 2.认识deque 四…...

面试题(二十二)消息队列与搜索引擎
2. 消息队列 2.1 MQ有什么用? 参考答案 消息队列有很多使用场景,比较常见的有3个:解耦、异步、削峰。 解耦:传统的软件开发模式,各个模块之间相互调用,数据共享,每个模块都要时刻关注其他模…...

Spring Security in Action 第三章 SpringSecurity管理用户
本专栏将从基础开始,循序渐进,以实战为线索,逐步深入SpringSecurity相关知识相关知识,打造完整的SpringSecurity学习步骤,提升工程化编码能力和思维能力,写出高质量代码。希望大家都能够从中有所收获&#…...

Java面试——maven篇
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

基于微信小程序的游戏账号交易小程序
文末联系获取源码 开发语言:Java 框架:ssm JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7/8.0 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9 浏览器…...

Matlab绘制隐函数总结-二维和三维
1.二维隐函数 二维隐函数满足f(x,y)0f(x,y)0f(x,y)0,这里无法得到yf(x)yf(x)yf(x)的形式。不能通过普通函数绘制。 我们要关注的是使用fplot函数和fimplicit函数。 第1种情况:基本隐函数 基本的隐函数形式形如: x2y22x2(x2y2)12x^{2}y^{…...
如何直观地理解傅立叶变换?频域和时域的理解
如何直观地理解傅立叶变换 傅里叶变换连续形式的傅立叶变换如何直观地理解傅立叶变换?一、傅里叶级数1.1傅里叶级数的三角形式1.2 傅里叶级数的复指数形式二、傅里叶变换2.1一维连续傅里叶变换三、频谱和功率谱3.1频谱的获得3.2频谱图的特征3.3频谱图的组成频域(frequency do…...

STC15读取内部ID示例程序
STC15读取内部ID示例程序🎉本案例基于STC15F2K60S2为验证对象。 📑STC15 ID序列介绍 STC15系列STC最新一代STC15系列单片机出厂时都具有全球唯一身份证号码(ID号)。最新STC15系列单片机的程序存储器的最后7个字节单元的值是全球唯一ID号,用…...

Xml格式化与高亮显示
具体请参考:Xml格式化与高亮显示...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...