当前位置: 首页 > news >正文

Python脚本:将Word文档转换为Excel文件

在这里插入图片描述

引言

在文档处理中,我们经常需要将Word文档中的内容转换成其他格式,如Excel,以便更好地进行数据分析和报告。针对这一需求,我编写了一个Python脚本,能够批量处理指定目录下的Word文档,将其内容结构化并转换为Excel文件。

功能概述

这个脚本的主要功能包括:

  1. 批量读取Word文档:自动检索指定目录下的所有Word文档(.docx格式)。
  2. 内容抽取和组织:根据Word文档中的标题层级(Heading),抽取和组织内容。
  3. 关键信息提取:自动从Word文档的文件名中提取关键信息,作为Excel表格中的一级节点名称。
  4. 结构化DataFrame创建:将抽取的信息转化为DataFrame,包含一级至四级节点及其对应内容。
  5. Excel文件保存:将每个Word文档转换得到的DataFrame保存为同名的Excel文件,位于原始Word文档所在的同一目录。

使用方法

  1. 准备文档:确保所有待处理的Word文档位于同一目录下,并且每个文档中要有定义好的标题样式(一级标题、二级标题等)。
  2. 指定目录:修改脚本中的batch_process_word_to_excel函数中的directory参数,指定Word文档所在目录。
  3. 运行脚本:执行脚本,等待处理完成。脚本将在指定目录下生成对应的Excel文件,文件名与原Word文档一致,但扩展名为’.xlsx’。

代码解析

以下是脚本的完整代码,包含了所需的库和函数定义:

# -*- coding: utf-8 -*-
"""
此Python脚本旨在自动化处理目录下所有的Word文档(.docx),将其内容结构化并转换为Excel文件(.xlsx)。主要功能:
1. 批量读取指定目录下的所有Word文档。
2. 对每个Word文档,根据文档内的标题层级(Heading)结构,抽取和组织内容。
3. 自动从Word文档的文件名中提取关键信息作为Excel表格中的一级节点名称,特别关注“分册”和“细则”之间的文本。
4. 将抽取的信息转化为结构化的DataFrame,其中包含一级至四级节点及其对应内容。具体转换规则如下:填充说明:1.word文件名为一级标题,作为Excel中的一级节点;2.word中的一级标题作为Excel中的二级节点,一级标题和当前一级标题下的第一个二级标题之间的正文内容作为Excel的二级内容;3.word中的二级标题作为Excel中的三级节点,二级标题和当前二级标题下的第一个三级标题之间的正文内容作为Excel的三级内容;4.word中的三级标题作为Excel中的四级节点,三级标题和当前三级标题下的第一个四级标题之间的正文内容作为Excel的四级内容;
5. 将每个Word文档转换得到的DataFrame保存为同名的Excel文件,位于原始Word文档所在的同一目录。使用方法:
- 确保所有待处理的Word文档位于同一目录下。并且,每个word中要有样式:一级标题、二级标题、三级标题等
- 修改'batch_process_word_to_excel'函数中的'directory'参数,指定Word文档所在目录。
- 运行脚本,脚本将在指定目录下生成对应的Excel文件,文件名与原Word文档一致,但扩展名为'.xlsx'。依赖库:
- os: 提供与操作系统交互的功能,如文件和目录操作。
- docx: 用于读取Word文档的库。
- pandas: 用于数据处理和分析的库,创建DataFrame和保存Excel文件。注意事项:
- 代码假设Word文档中的标题层级不超过四级。
- 一级节点名称的提取逻辑基于文件名中包含“分册”和“细则”的特定格式。
- 如需处理不同层级或文件命名规则,需相应调整代码逻辑。"""
import os
import docx
import pandas as pddef extract_title_from_filename(filename):# 分割文件名找到"分册"和"细则"parts = filename.split('分册')if len(parts) > 1:title_part = parts[1].split('细则')[0]return title_part.strip()  # 去除前后空格else:return filename  # 如果没有找到"分册"或"细则",返回原文件名def process_word_to_excel(file_path):doc = docx.Document(file_path)columns = ['一级节点', '二级节点', '二级内容', '三级节点', '三级内容', '四级节点', '四级内容']df = pd.DataFrame(columns=columns)# 获取Word文档的文件名,并从中提取一级节点名称filename = os.path.basename(file_path)word_file_name = extract_title_from_filename(filename)current_level2 = ""current_level3 = ""current_level4 = ""current_content = ""last_level = 0for paragraph in doc.paragraphs:if paragraph.style.name.startswith('Heading'):heading_level = int(paragraph.style.name[-1])if heading_level <= last_level:if current_level4:new_row = pd.DataFrame({'一级节点': [word_file_name],'二级节点': [current_level2],'三级节点': [current_level3],'四级节点': [current_level4],'四级内容': [current_content]})elif current_level3:new_row = pd.DataFrame({'一级节点': [word_file_name],'二级节点': [current_level2],'三级节点': [current_level3],'三级内容': [current_content]})elif current_level2:new_row = pd.DataFrame({'一级节点': [word_file_name],'二级节点': [current_level2],'二级内容': [current_content]})df = pd.concat([df, new_row], ignore_index=True)current_content = ""if heading_level == 1:current_level2 = paragraph.textcurrent_level3 = ""current_level4 = ""last_level = 1elif heading_level == 2:current_level3 = paragraph.textcurrent_level4 = ""last_level = 2elif heading_level == 3:current_level4 = paragraph.textlast_level = 3else:current_content += paragraph.text + '\n'if current_content:if current_level4:new_row = pd.DataFrame({'一级节点': [word_file_name],'二级节点': [current_level2],'三级节点': [current_level3],'四级节点': [current_level4],'四级内容': [current_content]})elif current_level3:new_row = pd.DataFrame({'一级节点': [word_file_name],'二级节点': [current_level2],'三级节点': [current_level3],'三级内容': [current_content]})elif current_level2:new_row = pd.DataFrame({'一级节点': [word_file_name],'二级节点': [current_level2],'二级内容': [current_content]})df = pd.concat([df, new_row], ignore_index=True)return dfdef batch_process_word_to_excel(directory):for filename in os.listdir(directory):if filename.endswith('.docx'):file_path = os.path.join(directory, filename)df = process_word_to_excel(file_path)excel_filename = os.path.splitext(filename)[0] + '.xlsx'excel_path = os.path.join(directory, excel_filename)df.to_excel(excel_path, index=False)print(f'Processed {filename} to {excel_filename}')# 调用函数,指定目录
batch_process_word_to_excel('D:\\test')

相关文章:

Python脚本:将Word文档转换为Excel文件

引言 在文档处理中&#xff0c;我们经常需要将Word文档中的内容转换成其他格式&#xff0c;如Excel&#xff0c;以便更好地进行数据分析和报告。针对这一需求&#xff0c;我编写了一个Python脚本&#xff0c;能够批量处理指定目录下的Word文档&#xff0c;将其内容结构化并转换…...

【单链表】03 设L为带头结点的单链表,编写算法实现从尾到头反向输出每个结点的值。

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux算法题上机准备 &#x1f618;欢迎 ❤️关注 &#x1f44d;点赞 &#x1f64c;收藏 ✍️留言 题目 设L为带头结点的单链表&#xff0c;编写算法实现从尾到头反向输出每个结点的值。 算法…...

鸿蒙开发设备管理:【@ohos.vibrator (振动)】

振动 说明&#xff1a; 开发前请熟悉鸿蒙开发指导文档&#xff1a;gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 本模块首批接口从API version 8开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 导入模块 imp…...

【信息学奥赛】CSP-J/S初赛07 排序算法及其他算法在初赛中的考察

本专栏&#x1f449;CSP-J/S初赛内容主要讲解信息学奥赛的初赛内容&#xff0c;包含计算机基础、初赛常考的C程序和算法以及数据结构&#xff0c;并收集了近年真题以作参考。 如果你想参加信息学奥赛&#xff0c;但之前没有太多C基础&#xff0c;请点击&#x1f449;专栏&#…...

第N7周:seq2seq翻译实战-pytorch复现-小白版

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 理论基础 seq2seq&#xff08;Sequence-to-Sequence&#xff09;模型是一种用于机器翻译、文本摘要等序列转换任务的框架。它由两个主要的递归神经网络&#…...

java集合(1)

目录 一.集合概述 二. 集合体系概述 1. Collection接口 1.1 List接口 1.2 Set接口 2. Map接口 三. ArrayList 1.ArrayList常用方法 2.ArrayList遍历 2.1 for循环 2.2 增强for循环 2.3 迭代器遍历 一.集合概述 我们经常需要存储一些数据类型相同的元素,之前我们学过…...

分布式数据库HBase:从零开始了解列式存储

在接触过大量的传统关系型数据库后你可能会有一些新的问题: 无法整理成表格的海量数据该如何储存? 在数据非常稀疏的情况下也必须将数据存储成关系型数据库吗? 除了关系型数据库我们是否还有别的选择以应对Web2.0时代的海量数据? 如果你也曾经想到过这些问题, 那么HBase将是…...

接口测试流程及测试点!

一、什么时候开展接口测试 1.项目处于开发阶段&#xff0c;前后端联调接口是否请求的通&#xff1f;&#xff08;对应数据库增删改查&#xff09;--开发自测 2.有接口需求文档&#xff0c;开发已完成联调&#xff08;可以转测&#xff09;&#xff0c;功能测试展开之前 3.专…...

已经安装deveco-studio-4.1.3.500的基础上安装deveco-studio-3.1.0.501

目录标题 1、执行exe文件后安装即可2、双击devecostudio64_3.1.0.501.exe2.1、安装Note (注意和4.1的Note放不同目录)2.2、安装ohpm (注意和4.1版本的ohpm放不同目录)2.3、安装SDK (注意和4.1版本的SDK放不同目录) 1、执行exe文件后安装即可 2、双击devecostudio64_3.1.0.501.e…...

【C++】 解决 C++ 语言报错:Use of Uninitialized Variable

文章目录 引言 使用未初始化的变量&#xff08;Use of Uninitialized Variable&#xff09;是 C 编程中常见且危险的错误之一。它通常在程序试图使用尚未赋值的变量时发生&#xff0c;导致程序行为不可预测&#xff0c;可能引发运行时错误、数据损坏&#xff0c;甚至安全漏洞。…...

2024年7月6日 十二生肖 今日运势

小运播报&#xff1a;2024年7月6日&#xff0c;星期六&#xff0c;农历六月初一 &#xff08;甲辰年庚午月辛未日&#xff09;&#xff0c;法定节假日。 红榜生肖&#xff1a;猪、马、兔 需要注意&#xff1a;狗、鼠、牛 喜神方位&#xff1a;西南方 财神方位&#xff1a;正…...

ubuntu丢失网络/网卡的一种原因解决方案

现象 开机进入ubuntu后发现没有网络&#xff0c;无论是在桌面顶部状态栏的快捷键 还是 系统设置中&#xff0c;都没有”有线网“和”无线网“的选项&#xff0c;”代理“的选项是有的使用数据线连接电脑和手机&#xff0c;手机开启”通过usb共享网络“&#xff0c;还是没有任何…...

第6篇 共识机制深度解析:PoW、PoS、DPoS和PBFT

在区块链的世界里,有一个非常重要的概念叫做“共识机制”。它就像是区块链的心脏,保证大家在这条链上的信息是可靠的、不可篡改的。今天,我们就来通俗易懂地聊聊区块链里的四大共识机制:工作量证明(PoW)、权益证明(PoS)、委托权益证明(DPoS)和拜占庭容错(PBFT)。为…...

Windows环境使用SpringBoot整合Minio平替OSS

目录 配置Minio环境 一、下载minio.exe mc.exe 二、设置用户名和密码 用管理员模式打开cmd 三、启动Minio服务器 四、访问WebUI给的地址 SpringBoot整合Minio 一、配置依赖&#xff0c;application.yml 二、代码部分 FileVO MinioConfig MinioUploadService MinioController 三…...

LeetCode 196, 73, 105

目录 196. 删除重复的电子邮箱题目链接表要求知识点思路代码 73. 矩阵置零题目链接标签简单版思路代码 优化版思路代码 105. 从前序与中序遍历序列构造二叉树题目链接标签思路代码 196. 删除重复的电子邮箱 题目链接 196. 删除重复的电子邮箱 表 表Person的字段为id和email…...

在Apache HTTP服务器上配置 TLS加密

安装mod_ssl软件包 [rootlocalhost conf.d]# dnf install mod_ssl -y此时查看监听端口多了一个443端口 自己构造证书 [rootlocalhost conf.d]# cd /etc/pki/tls/certs/ [rootlocalhost certs]# openssl genrsa > jiami.key [rootlocalhost certs]# openssl req -utf8 -n…...

C语言力扣刷题11——打家劫舍1——[线性动态规划]

力扣刷题11——打家劫舍1和2——[线性动态规划] 一、博客声明二、题目描述三、解题思路1、线性动态规划 a、什么是动态规划 2、思路说明 四、解题代码&#xff08;附注释&#xff09; 一、博客声明 找工作逃不过刷题&#xff0c;为了更好的督促自己学习以及理解力扣大佬们的解…...

房屋租赁管理小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;中介管理&#xff0c;房屋信息管理&#xff0c;房屋类型管理&#xff0c;租房订单管理&#xff0c;租房信息管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;房屋信息&am…...

oracle sql语句 排序 fjd = ‘0101‘ 排在 fjd = ‘0103‘ 的前面

要实现这个排序需求&#xff0c;你可以使用 CASE 表达式来自定义排序逻辑。假设你有一个表格名为 your_table&#xff0c;并且有一个字段 fjd 存储类似 ‘0101’, ‘0103’ 这样的值&#xff0c;你可以这样编写 SQL 查询&#xff1a; SELECT * FROM your_table ORDER BY CASE …...

初试成绩占比百分之70!计算机专硕均分340+!华中师范大学计算机考研考情分析!

华中师范大学&#xff08;Central China Normal University&#xff09;简称“华中师大”或“华大”&#xff0c;位于湖北省会武汉&#xff0c;是中华人民共和国教育部直属重点综合性师范大学&#xff0c;国家“211工程”、“985工程优势学科创新平台”重点建设院校&#xff0c…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...