C语言力扣刷题11——打家劫舍1——[线性动态规划]
力扣刷题11——打家劫舍1和2——[线性动态规划]
- 一、博客声明
- 二、题目描述
- 三、解题思路
- 1、线性动态规划
- a、什么是动态规划
- 2、思路说明
- 四、解题代码(附注释)
一、博客声明
找工作逃不过刷题,为了更好的督促自己学习以及理解力扣大佬们的解题思路,开辟这个系列来记录。代码可能不是自己写的,不求方法最好,只求更多地理解大佬们的解题思路。
二、题目描述
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 400
三、解题思路
1、线性动态规划
a、什么是动态规划
动态规划不是一种算法,而是一种思想和解题策略。而要掌握动态规划比较难,小编还没有掌握,还在努力算题中。也不知道该怎么解释。推荐大家去看下面的视频:
视频1:【动态规划】这可能是最好懂的动态规划入门教程
视频2:动态规划入门50题
2、思路说明
换种理解方式,如果有A,B,C,D四个区域,如何保证我穿过四个区域走的路程最长?是不是就是只要保证每个区域都走最长的路,就可以保证四个区域后,我走的路程最长。
那么打家劫舍这个题目,换个思想,只要保证我到第i家时,不管偷还是不偷,手里积累的钱是两种策略(偷和不偷)中最多的就可以了。如果偷的话,钱就变为偷到前前一家积累的钱加上这家的钱,不偷的话就是偷到前一家积累的钱。比较这两个谁大就可以了。然后就是保存好偷到第i-2家和偷到第i-1家积累的钱,方便对下一家是否偷作为判断依据。
1、如果数组长度等于1,返回nums[0];
2、如果数组长度等于2,返回fmax(nums[0], nums[1]);
3、如果数组长度大于2,就需要从第三房子开始判断,偷还是不偷这两种选择,哪种选择能让当前手中积累的钱更多;

打家劫舍2只需要考虑偷盗的范围就可以了,代码最后一行变为return fmax(stealRang(nums, 0, numsSize - 2), stealRang(nums, 1, numsSize - 1));。也就是考虑第一家偷的话,最后一家就不能偷,范围就变为从第0家偷到numsSize-2家;如果不偷第一家,范围就变成了从第1家偷到第numsSize-1家;比较这两个谁大就可以了。
四、解题代码(附注释)
///偷窃范围,从第start家到第end家。
int stealRang(int* nums, int start, int end){int first = nums[start], second = fmax(first, nums[start+1]);for(int i = start + 2; i <=end; i++){int temp = second;//考虑第i家,偷与不偷,哪个得的钱更多,不偷就还是原来的second值,偷就是前一家+该家金额second = fmax(second, first + nums[i]);first = temp;}return second;
}//该题目为属于线性动态规划题目
int rob(int* nums, int numsSize) {if(numsSize <= 1){//长度为1,返回第一个元素return nums[0];}if(numsSize == 2){//长度为2,返回两个元素中最大的return fmax(nums[0], nums[1]);}return stealRang(nums, 0, numsSize - 1);//返回最大值//return fmax(stealRang(nums, 0, numsSize - 2), stealRang(nums, 1, numsSize - 1)); //打家劫舍2返回这个
}相关文章:
C语言力扣刷题11——打家劫舍1——[线性动态规划]
力扣刷题11——打家劫舍1和2——[线性动态规划] 一、博客声明二、题目描述三、解题思路1、线性动态规划 a、什么是动态规划 2、思路说明 四、解题代码(附注释) 一、博客声明 找工作逃不过刷题,为了更好的督促自己学习以及理解力扣大佬们的解…...
房屋租赁管理小程序的设计
管理员账户功能包括:系统首页,个人中心,用户管理,中介管理,房屋信息管理,房屋类型管理,租房订单管理,租房信息管理 微信端账号功能包括:系统首页,房屋信息&am…...
oracle sql语句 排序 fjd = ‘0101‘ 排在 fjd = ‘0103‘ 的前面
要实现这个排序需求,你可以使用 CASE 表达式来自定义排序逻辑。假设你有一个表格名为 your_table,并且有一个字段 fjd 存储类似 ‘0101’, ‘0103’ 这样的值,你可以这样编写 SQL 查询: SELECT * FROM your_table ORDER BY CASE …...
初试成绩占比百分之70!计算机专硕均分340+!华中师范大学计算机考研考情分析!
华中师范大学(Central China Normal University)简称“华中师大”或“华大”,位于湖北省会武汉,是中华人民共和国教育部直属重点综合性师范大学,国家“211工程”、“985工程优势学科创新平台”重点建设院校,…...
【面向就业的Linux基础】从入门到熟练,探索Linux的秘密(十)-git(2)
下面是一些git的常用命令和基本操作,可以当做平常的笔记查询,用于学习!!! 文章目录 前言 一、git 二、git常用命令 总结 前言 下面是一些git的常用命令和基本操作,可以当做平常的笔记查询,用于…...
JMH320【亲测】【御剑九歌】唯美仙侠手游御剑九歌+WIN学习手工端+视频教程+开服清档+运营后台+授权GM物品充值后台
资源介绍: 这也是仙梦奇缘的一个游戏 注意:外网14位IP或域名 ———————————————————————————————————– ps后台介绍: 1区运营后台:http://ip:9981/admin/admintool/ 2区运营后台:http://ip…...
【matlab】信号分解/故障诊断——智能优化算法优化VMD
目录 引言 应用领域 VMD代码实现 智能优化算法优化VMD 引言 VMD(变分模态分解)是一种新的非线性自适应信号分解方法,它通过变分原理将复杂信号分解为若干个具有不同频率中心和带宽的本征模态函数(Intrinsic Mode Functions, …...
【重磅】万能模型-直接能换迪丽热巴的模型
万能模型,顾名思义,不用重新训练src,直接可以用的模型,适应大部分原视频脸 模型用法和正常模型一样,但可以跳过训练阶段!直接到合成阶段使用该模型 本模型没有做Xseg,对遮挡过多的画面不会自动适…...
Web基础和HTTP协议
web基础与HTTP协议: web:就是我们所说的网页。打开网站展示的页面。(全球广域网,万维网) world wide web 分布式图形信息系统 http https 超文本传输协议 分布式:计算机系统或者应用程序分布在多台计算机或者服务器上。通过计算机网络互相通信和协作。共同完成任…...
Mini-L-CTF-2022 minispringboot Thymeleaf模板注入 spel的绕过
Mini-L-CTF-2022 minispringboot Thymeleaf模板注入 spel的绕过 就是一个低版本的Thymeleaf注入 漏洞点 public class MainController {GetMapping({"/{language}"})public String test(PathVariable(name "language") String language, RequestParam(…...
LLM - 神经网络的组成
1. 一个神经元的结构:即接受多个输入X向量,在一个权重向量W和一个偏执标量b的作用下,经过激活函数后,产生一个输出。 2. 一层神经网络的结构:该层网络里的每个神经元并行计算,得到各自的输出;计算方式是输入…...
C++:拷贝构造函数
拷贝构造函数的引入 用对象来初始化对象 (1)简单变量定义时,可以直接初始化,也可以用另一个同类型变量来初始化。举例说明 (2)用class来定义对象时,可以直接初始化,也可以用另一个对象来初始化。举例说明 testperson xiaohong(na…...
云服务出现故障这样处理
无法连接云服务器 服务器远程无法连接时,可通过7ECloud控制台进行连接。 常见故障现象 1、ping不通 2、ping丢包 3、部分端口telnet不通 4、全部端口telnet不通 5、广告、弹窗植入 6、域名无法访问IP访问正常 常见故障原因 1、云服务器过期、关机或者EIP被…...
CVPR2024自动驾驶轨迹预测方向的论文整理
2024年自动驾驶轨迹预测方向的论文汇总 1、Producing and Leveraging Online Map Uncertainty in Trajectory Prediction 论文地址:https://arxiv.org/pdf/2403.16439 提出针对在线地图不确定性带给轨迹预测的影响对应的解决方案。 在轨迹预测中,利用在…...
数据结构——队列练习题
在C语言中,.和->运算符用于访问结构体的成员变量。它们之间的区别在于:.运算符用于访问结构体变量的成员。->运算符用于访问结构体指针变量的成员 1a(rear指向队尾元素后一位,判空判满时牺牲一个存储单元) 首先…...
PLL和CDR的内部结构及其区别
比较PLL和CDR的内部结构及其区别: 基本结构: PLL(相位锁定环): 相位检测器环路滤波器压控振荡器(VCO)分频器(可选,用于频率合成) CDR(时钟数据恢复…...
HarmonyOS APP应用开发项目- MCA助手(Day02持续更新中~)
简言: gitee地址:https://gitee.com/whltaoin_admin/money-controller-app.git端云一体化开发在线文档:https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/agc-harmonyos-clouddev-view-0000001700053733-V5注:…...
华为交换机 LACP协议
华为交换机支持的LACP协议,即链路聚合控制协议,是一种基于IEEE 802.3ad标准的动态链路聚合与解聚合的协议。它允许设备根据自身配置自动形成聚合链路并启动聚合链路收发数据。 在LACP模式下,链路聚合组能够自动调整链路聚合,维护…...
node 下载文件到网络共享目录
1、登录网络共享计算器 2、登录进入后复制要存储文件的目录路径 例如: \\WIN-desktop\aa\bb\cc 3、node 下载后写入网络共享目录 注意(重要):在使用UNC路径时,请确保你正确转义了反斜杠(使用两个反斜杠来表示一个&…...
STM32基础知识
一.STM32概述 第一款STM32单片机发布的时间为2007年6月11日。由意法半导体(ST)公司推出,是STM32系列中的首款产品,具体型号为STM32F1,它是一款基于Cortex-M内核的32位微控制器(MCU)。 STM32F1…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
