当前位置: 首页 > news >正文

CVPR2024自动驾驶轨迹预测方向的论文整理

2024年自动驾驶轨迹预测方向的论文汇总

1、Producing and Leveraging Online Map Uncertainty in Trajectory Prediction

论文地址:https://arxiv.org/pdf/2403.16439
提出针对在线地图不确定性带给轨迹预测的影响对应的解决方案。
在轨迹预测中,利用在线地图不确定性是一个重要的课题。随着位置数据的增加和地图更新的频率加快,准确地处理这些不确定性变得至关重要。以下是一些关键步骤:

  • 收集数据:首先,需要收集大量的位置数据,并确保这些数据来自可靠的来源。
  • 构建地图模型:使用收集到的数据来构建地图模型。这可能涉及到使用机器学习算法来识别模式并生成预测。
  • 处理不确定性:考虑到地图更新的频率,必须考虑如何处理不确定性。一种方法是使用概率分布来表示每个位置点的不确定性。
  • 集成实时更新:为了保持准确性,需要将实时更新集成到模型中。这可以通过定期更新地图模型来实现。
  • 评估性能:最后,对模型进行评估以确保其在实际应用中的有效性。可以使用各种指标来衡量模型的性能,例如平均绝对误差(MAE)或均方根误差(RMSE)。

通过这些步骤,我们可以有效地利用在线地图的不确定性来提高轨迹预测的准确性。

2、CaDeT: a Causal Disentanglement Approach for Robust Trajectory Prediction in Autonomous Driving

论文:https://openaccess.thecvf.com/content/CVPR2024/papers/Pourkeshavarz_CaDeT_a_Causal_Disentanglement_Approach_for_Robust_Trajectory_Prediction_in_CVPR_2024_paper.pdf
CaDeT的核心思想是通过因果分解来分离出环境因素对轨迹预测的影响,并将其从预测模型中剔除从而训练一个自动适应新环境的轨迹预测模型。
实验数据集:AV2,无代码公开

3、Adapting to Length Shift: FlexiLength Network for Trajectory Prediction

论文:https://arxiv.org/pdf/2404.00742
篇论文主要关注的是如何解决轨迹预测任务中长度变化的问题,通过引入一个长度控制模块来实现的,该模块可以根据输入轨迹的长度动态地生成一个长度向量,用于指导后续的预测过程。
数据集:nuScenes, AV1,base model:HiVT,下图为HiVT使用了他的方案后的涨点:
在这里插入图片描述

4、HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention

论文地址:https://arxiv.org/pdf/2404.06351
代码地址:https://github.com/XiaolongTang23/HPNet
该论文介绍了一种名为 HPNet 的新方法,它利用历史预测注意力来提高轨迹预测的准确性。传统的轨迹预测模型通常只考虑当前时刻的环境信息,而忽视了之前预测的历史信息。然而,HPNet 引入了一个历史预测注意力机制,使得模型能够更好地利用先前的预测结果来指导后续的预测过程。
具体来说,HPNet 包含以下几个关键步骤:首先,需要收集大量的位置数据,并确保这些数据来自可靠的来源。其次使用收集到的数据来训练一个能够产生更准确预测的模型。在这个过程中,引入历史预测注意力机制。
然后使用历史预测注意力机制来训练模型,使其能够更好地利用先前的预测结果来指导后续的预测过程。最后,对模型进行评估以确保其在实际应用中的有效性。可以使用各种指标来衡量模型的性能,例如平均绝对误差(MAE)或均方根误差(RMSE)。通过这些步骤,HPNet 提供了一种新的方法来提高动态轨迹预测的准确性和鲁棒性。

实验数据集:Argoverse1
代码地址:https://github.com/XiaolongTang23/HPNet
论文地址:https://arxiv.org/pdf/2404.06351
实验结果:数据集:AV1
在这里插入图片描述

5、DAMM:Density-Adaptive Model Based on Motif Matrix for Multi-Agent Trajectory Prediction

论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Wen_Density-Adaptive_Model_Based_on_Motif_Matrix_for_Multi-Agent_Trajectory_Prediction_CVPR_2024_paper.pdf

技术文档:https://openaccess.thecvf.com/content/CVPR2024/supplemental/Wen_Density-Adaptive_Model_Based_CVPR_2024_supplemental.pdf
实验数据集:nuScenes Argoverse

这篇论文主要探讨如何通过基于模式矩阵的密度自适应模型来实现多代理轨迹预测,模式矩阵是一种用于表示道路用户之间相互作用关系的数据结构, 它能够捕捉到不同道路用户之间的复杂交互行为,例如跟随、并行行驶等。DAM能够根据当前场景中的道路用户密度动态调整其内部参数,从而提高预测准确性。

6、MATRIX: Multi-Agent Trajectory Generation with Diverse Contexts

轨迹生成方向相关。该论文的主要思想是提出一种新的方法来生成具有丰富上下文信息的多智能体轨迹。
论文地址:https://arxiv.org/pdf/2403.06041v1

7、SeNeVA:Quantifying Uncertainty in Motion Prediction with Variational Bayesian Mixture

论文地址:https://arxiv.org/pdf/2404.03789
是一篇关于运动预测中不确定性度量的论文。该论文的主要思想是提出了一种基于变分贝叶斯混合模型(Variational Bayesian Mixture, VBM)的方法来量化运动预测中的不确定性。传统的运动预测方法往往假设预测结果是确定性的,即预测结果只有一个确定的值。然而,在实际应用中,我们经常需要面对各种不确定因素,比如传感器噪声、模型误差等,这些都会导致预测结果存在一定的不确定性。因此,准确地量化并表达这种不确定性对于运动预测系统的可靠性和安全性至关重要。
论文中提出的 VBM 方法通过引入贝叶斯统计学的思想,将预测结果视为由多个潜在状态组成的混合分布。每个潜在状态对应着一种可能的运动模式,而混合系数则反映了不同模式的概率大小。这样,我们就可以通过计算混合系数来衡量预测结果的不确定性。
具体来说,VBM 方法首先构建了一个包含多个潜在状态的混合模型,然后利用变分贝叶斯技术对模型参数进行优化。优化过程中,不仅考虑了数据的似然函数,还考虑了模型的复杂度惩罚项,以避免过度拟合。最终,通过分析混合系数的分布情况,我们可以得到一个概率分布图,直观地展示出预测结果的不确定性。
实验结果在多个数据集上验证(包括AV2),效果优于DenseTNT,Forecast-MAE

8、Continual Learning for Motion Prediction Model via Meta-Representation Learning and Optimal Memory Buffer Retention Strategy

论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Kang_Continual_Learning_for_Motion_Prediction_Model_via_Meta-Representation_Learning_and_CVPR_2024_paper.pdf
实验数据集:nuScenes
该论文的主要思想是提出了一种结合元表示学习和最优记忆缓冲区保留策略的连续学习方法。
传统的运动预测模型通常假设训练数据集是静态不变的,然而在现实世界中,我们经常需要处理不断变化的数据流。这就要求我们的模型能够适应新的数据分布,同时保持对之前数据的有效记忆。因此,我们需要引入连续学习的概念,即在模型训练过程中,允许新数据的加入并更新模型参数,同时保留对之前数据的记忆。

9、SmartRefine: A Scenario-Adaptive Refinement Framework for Efficient Motion Prediction

论文:https://arxiv.org/pdf/2403.11492
代码:https://github.com/opendilab/SmartRefine/
论文解读:论文解读
该论文的主要思想是提出了一种场景自适应的精炼框架,通过分析当前的传感器数据或者历史数据,对当前所处的场景进行识别,针对不同的场景,选择最适合的预测策略,对于每个场景,采用不同的精炼算法来进一步优化预测结果。这些算法可以包括但不限于卡尔曼滤波、粒子滤波等,为了持续改进预测性能,论文还提出了一种反馈机制。即当新的数据到来时,不仅会更新当前的预测结果,还会将这些新数据加入到训练集中,用于后续的场景识别和策略选择。
模型框架:
在这里插入图片描述

实验结果:
在这里插入图片描述

10、Generalized Predictive Model for Autonomous Driving 框架级别 目前线上预测架构设计可以关注

论文:https://arxiv.org/pdf/2403.09630
数据集:kitti,waymo, nuScenes
该论文的主要思想是提出了一种通用的预测模型,旨在为自动驾驶系统提供更准确、可靠的预测能力。前期数据预处理,然后进入模型选择与训练:根据具体的预测任务,选择合适的预测模型进行训练。这些模型可以包括但不限于回归模型、分类模型、强化学习模型等。
集成学习:为了进一步提高预测性能,论文还提出了一种集成学习的方法。即将多个不同的预测模型组合起来,形成一个更为强大的整体模型。

11、Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations

论文地址:https://arxiv.org/pdf/2403.13261
无监督的方法,可解决标注数据没有或者很少的问题.
数据集:nuScenes
该论文的主要思想是提出了一种无监督的、类别的泛化能力更强的运动预测方法,并且通过空间和时间一致性正则化来进一步提升预测精度。
数据增强:首先,通过对原始数据进行随机变换(如旋转、平移、缩放等),生成一系列的伪标签数据。
预测模型训练:然后,使用这些伪标签数据来训练一个运动预测模型。值得注意的是,这里的预测模型并不直接预测车辆的具体类别(如汽车、自行车等),而是预测车辆的运动状态(如位置、速度等)。
空间一致性正则化:为了保证预测结果在空间上的连续性,论文引入了空间一致性正则化。简单来说,就是要求相邻时刻的预测结果在空间上应该尽可能接近。
时间一致性正则化:同样地,为了保证预测结果在时间上的连续性,论文还引入了时间一致性正则化。即要求相邻时刻的预测结果在时间上也应该尽可能接近。
预测结果评估:最后,通过一些标准的评估指标(如均方误差、平均绝对误差等)来评估预测结果的质量。

12、MoST: Multi-Modality Scene Tokenization for Motion Prediction

论文:https://arxiv.org/pdf/2404.1953
端到端的,场景分块,运动预测,效果优于MultiPath++, MTR, 数据集:WOMD
该论文介绍了一种名为 MoST 的新方法,用于运动预测。

传统的运动预测模型往往只关注单个传感器的数据,而忽略了其他可用的信息源。MoST 则引入了多模态场景分割的概念,将来自多个传感器的数据整合起来,从而提高了预测的准确性。具体来说,MoST 包含以下几个关键步骤:

  • 数据收集:首先,需要收集多种类型的传感器数据,例如摄像头图像、雷达点云等。
  • 建立模型:使用收集到的数据来训练一个能够产生更准确预测的模型。在这个过程中,引入多模态场景分割的概念。
  • 训练模型:使用多模态场景分割的概念来训练模型,使其能够更好地利用来自多个传感器的数据来指导运动预测。
    -评估性能:最后,对模型进行评估以确保其在实际应用中的有效性。可以使用各种指标来衡量模型的性能,例如平均绝对误差(MAE)或均方根误差(RMSE)。

通过这些步骤,MoST 提供了一种新的方法来提高运动预测的准确性和鲁棒性。

相关文章:

CVPR2024自动驾驶轨迹预测方向的论文整理

2024年自动驾驶轨迹预测方向的论文汇总 1、Producing and Leveraging Online Map Uncertainty in Trajectory Prediction 论文地址:https://arxiv.org/pdf/2403.16439 提出针对在线地图不确定性带给轨迹预测的影响对应的解决方案。 在轨迹预测中,利用在…...

数据结构——队列练习题

在C语言中,.和->运算符用于访问结构体的成员变量。它们之间的区别在于:.运算符用于访问结构体变量的成员。->运算符用于访问结构体指针变量的成员 1a(rear指向队尾元素后一位,判空判满时牺牲一个存储单元) 首先…...

PLL和CDR的内部结构及其区别

比较PLL和CDR的内部结构及其区别: 基本结构: PLL(相位锁定环): 相位检测器环路滤波器压控振荡器(VCO)分频器(可选,用于频率合成) CDR(时钟数据恢复…...

HarmonyOS APP应用开发项目- MCA助手(Day02持续更新中~)

简言: gitee地址:https://gitee.com/whltaoin_admin/money-controller-app.git端云一体化开发在线文档:https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/agc-harmonyos-clouddev-view-0000001700053733-V5注:…...

华为交换机 LACP协议

华为交换机支持的LACP协议,即链路聚合控制协议,是一种基于IEEE 802.3ad标准的动态链路聚合与解聚合的协议。它允许设备根据自身配置自动形成聚合链路并启动聚合链路收发数据。 在LACP模式下,链路聚合组能够自动调整链路聚合,维护…...

node 下载文件到网络共享目录

1、登录网络共享计算器 2、登录进入后复制要存储文件的目录路径 例如: \\WIN-desktop\aa\bb\cc 3、node 下载后写入网络共享目录 注意(重要):在使用UNC路径时,请确保你正确转义了反斜杠(使用两个反斜杠来表示一个&…...

STM32基础知识

一.STM32概述 第一款STM32单片机发布的时间为2007年6月11日。由意法半导体(ST)公司推出,是STM32系列中的首款产品,具体型号为STM32F1,它是一款基于Cortex-M内核的32位微控制器(MCU)。 STM32F1…...

安装docker版rabbitmq 3.12

本文介绍在Ubuntu22中安装docker版rabbitmq 3.12。 一、拉取镜像 docker pull rabbitmq:3.12.14-management二、创建数据目录和docker-compose文件 创建目录: cd /root mkdir rabbitmq-docker cd rabbitmq-docker mkdir data chmod 777 data创建docker-compose配…...

c++重定向输出和输出(竞赛讲解)

1.命令行重定向 在命令行中指定输出文件 指令 .\重定向学习.exe > 1.txt 效果 命令行输入和输出 指令 .\重定向学习.exe < 2.txt > 1.txt 效果 代码 #include<bits/stdc++.h> using namespace std; int n; int main(){cin>>n;for(int i=0;i<n;i…...

实在智能对话钉钉:宜搭+实在Agent,AI时代的工作方式

比起一个需求需要等产品、技术排期&#xff0c;越来越多的人开始追求把自己武装成「全能战士」&#xff0c;通过低代码工具一搭&#xff0c;一个高效的工作平台便产生了。 宜搭是钉钉自研的低代码应用构建平台&#xff0c;无论是专业开发者还是没有代码基础的业务人员&#xf…...

MySQL的Docker部署方式

说明:Docker部署MySQL主要是简单快速&#xff0c;不会对电脑系统造成污染。假如你的本地没有Docker&#xff0c;或者你不会使用Docker&#xff0c;则使用PyCharm去启动MySQL&#xff0c;或者直接在本机安装MySQL都是可以的。最重要的是&#xff0c;你要有一个MySQL环境&#xf…...

光伏电站数据采集方案(基于工业路由器部署)

​ 一、方案概述 本方案采用星创易联SR500工业路由器作为核心网关设备&#xff0c;实现对光伏电站现场数据的实时采集、安全传输和远程监控。SR500具备多接口、多功能、高可靠性等特点&#xff0c;能够满足光伏电站数据采集的各种需求。&#xff08;key-iot.com/iotlist/sr500…...

一文让你彻底搞懂什么是CDN

一、引言 在当今互联网时代&#xff0c;网站的加载速度和稳定性是用户体验的关键因素之一。而CDN&#xff08;Content Delivery Network&#xff0c;内容分发网络&#xff09;作为提升网站性能的重要技术手段&#xff0c;受到了广泛的关注和应用。本篇博客将深入探讨CDN的工作…...

1023记录

米哈游二面 自动化测试中自动化驱动的能力&#xff1f; pytest的驱动能力&#xff1a; 1&#xff0c;自动发现测试用例&#xff1a;以"test_"开头的Python文件、以"Test"开头的类和以"test_"开头的函数&#xff0c;将它们识别为测试用例 2&…...

【并发编程JUC】AQS详解

定义理解 AQS&#xff0c;全称为AbstractQueuedSynchronizer&#xff0c;是Java并发包&#xff08;java.util.concurrent&#xff09;中的一个框架级别的工具类&#xff0c;用于构建锁和同步器。它是许多同步类的基础&#xff0c;如ReentrantLock、Semaphore、CountDownLatch等…...

如何找BMS算法、BMS软件的实习

之前一直忙&#xff0c;好久没有更新了&#xff0c;今天就来写一篇文章来介绍如何找BMS方向的实习&#xff0c;以及需要具备哪些条件&#xff0c;我的实习经历都是在读研阶段找的&#xff0c;读研期间两段的实习经历再加上最高影响因子9.4分的论文&#xff0c;我的秋招可以说是…...

AR视频技术与EasyDSS流媒体视频管理平台:打造沉浸式视频体验

随着增强现实&#xff08;AR&#xff09;技术的飞速发展&#xff0c;其在各个领域的应用日益广泛。这项技术通过实时计算摄影机影像的位置及角度&#xff0c;将虚拟信息叠加到真实世界中&#xff0c;为用户带来超越现实的感官体验。AR视频技术不仅极大地丰富了我们的视觉体验&a…...

每天一个数据分析题(三百九十九)- 逻辑回归

逻辑回归中&#xff0c;若选0.5作为阈值区分正负样本&#xff0c;其决策平面是&#xff08; &#xff09; A. wxb&#xff1d; 0 B. wxb&#xff1d; 1 C. wxb&#xff1d; -1 D. wxb&#xff1d; 2 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点…...

【ARMv8/v9 GIC 系列 5.2 -- GIC 分组介绍:Group 0 |Group 1| Non-Secure Group 1】

请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC Interrupt grouping中断分组配置寄存器GIC 中断分组介绍Group 0(安全组0)Group 1(安全组1)Non-Secure Group 1(非安全组1)总结及例子GIC Interrupt grouping ARM GICv3 通过中断分组机制,与ARMv8异常模型和安全模型进行…...

前端代码规范 - 日志打印规范

在前端开发中&#xff0c;随着项目迭代升级&#xff0c;日志打印逐渐风格不一&#xff0c;合理的日志输出是监控应用状态、调试代码和跟踪用户行为的重要手段。一个好的日志系统能够帮助开发者快速定位问题&#xff0c;提高开发效率。本文将介绍如何在前端项目中制定日志输出规…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...