【MindSpore学习打卡】应用实践-计算机视觉-深入解析 Vision Transformer(ViT):从原理到实践
在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而,随着研究的深入,Transformer模型不仅在NLP领域大放异彩,还被引入到计算机视觉领域,形成了Vision Transformer(ViT)。ViT模型在不依赖传统卷积神经网络(CNN)的情况下,依然能够在图像分类任务中取得优异的效果。本文将深入解析ViT模型的结构、特点,并通过代码示例展示如何使用MindSpore框架实现ViT模型的训练、验证和推理。
ViT模型结构
ViT模型的主体结构基于Transformer模型的编码器(Encoder)部分,其整体结构如下图所示:
模型特点
为什么要使用Patch Embedding?
在传统的Transformer模型中,输入通常是一维的词向量序列,而图像数据是二维的像素矩阵。为了将图像数据转换为Transformer可以处理的形式,我们需要将图像划分为多个小块(patch),并将每个patch转换为一维向量。这一过程称为Patch Embedding。通过这种方式,我们可以将图像数据转换为类似于词向量的形式,从而利用Transformer模型处理图像数据。
为什么要使用位置编码(Position Embedding)?
由于Transformer模型在处理输入序列时不考虑顺序信息,因此在图像数据中,patch之间的空间关系可能会丢失。为了解决这个问题,我们引入了位置编码(Position Embedding),它为每个patch增加了位置信息,使得模型能够识别不同patch之间的空间关系。这对于保留图像的空间结构信息非常重要。
- Patch Embedding:输入图像被划分为多个patch(图像块),然后将每个二维patch转换为一维向量,并加上类别向量和位置向量作为模型输入。
- Transformer Encoder:模型主体的Block结构基于Transformer的Encoder部分,主要结构是多头注意力(Multi-Head Attention)和前馈神经网络(Feed Forward)。
- 分类头(Head):在Transformer Encoder堆叠后接一个全连接层,用于分类。
环境准备与数据读取
开始实验之前,请确保本地已经安装了Python环境和MindSpore。
首先下载本案例的数据集,该数据集是从ImageNet中筛选出来的子集。数据集路径结构如下:
.dataset/├── ILSVRC2012_devkit_t12.tar.gz├── train/├── infer/└── val/
from download import download
import os
import mindspore as ms
from mindspore.dataset import ImageFolderDataset
import mindspore.dataset.vision as transforms# 下载数据集
dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip"
path = "./"
path = download(dataset_url, path, kind="zip", replace=True)data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)trans_train = [transforms.RandomCropDecodeResize(size=224, scale=(0.08, 1.0), ratio=(0.75, 1.333)),transforms.RandomHorizontalFlip(prob=0.5),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)
Transformer基本原理
Transformer模型源于2017年的一篇文章,其主要结构为多个编码器和解码器模块。编码器和解码器由多头注意力(Multi-Head Attention)、前馈神经网络(Feed Forward)、归一化层(Normalization)和残差连接(Residual Connection)组成。
Self-Attention机制
Self-Attention机制是Transformer的核心,其主要步骤如下:
- 输入向量映射:将输入向量映射成Query(Q)、Key(K)、Value(V)三个向量。
- 计算注意力权重:通过点乘计算Query和Key的相似性,并通过Softmax函数归一化。
- 加权求和:使用注意力权重对Value进行加权求和,得到最终的Attention输出。
以下是Self-Attention的代码实现:
from mindspore import nn, opsclass Attention(nn.Cell):def __init__(self, dim: int, num_heads: int = 8, keep_prob: float = 1.0, attention_keep_prob: float = 1.0):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = ms.Tensor(head_dim ** -0.5)self.qkv = nn.Dense(dim, dim * 3)self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)self.out = nn.Dense(dim, dim)self.out_drop = nn.Dropout(p=1.0-keep_prob)self.attn_matmul_v = ops.BatchMatMul()self.q_matmul_k = ops.BatchMatMul(transpose_b=True)self.softmax = nn.Softmax(axis=-1)def construct(self, x):b, n, c = x.shapeqkv = self.qkv(x)qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))q, k, v = ops.unstack(qkv, axis=0)attn = self.q_matmul_k(q, k)attn = ops.mul(attn, self.scale)attn = self.softmax(attn)attn = self.attn_drop(attn)out = self.attn_matmul_v(attn, v)out = ops.transpose(out, (0, 2, 1, 3))out = ops.reshape(out, (b, n, c))out = self.out(out)out = self.out_drop(out)return out
Transformer Encoder
为什么要使用残差连接(Residual Connection)和归一化层(Normalization Layer)?
在深层神经网络中,随着层数的增加,梯度消失和梯度爆炸的问题变得越来越严重。残差连接通过在每一层加上输入的跳跃连接,可以有效缓解这些问题,确保信息能够顺利传递。此外,归一化层(如LayerNorm)可以加速模型的训练,并提高模型的稳定性和泛化能力。这些技术的结合,使得Transformer模型能够在更深的层次上进行有效的训练。
Transformer Encoder由多层Self-Attention和前馈神经网络(Feed Forward)组成,通过残差连接和归一化层增强模型的训练效果和泛化能力。
class FeedForward(nn.Cell):def __init__(self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, activation: nn.Cell = nn.GELU, keep_prob: float = 1.0):super(FeedForward, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.dense1 = nn.Dense(in_features, hidden_features)self.activation = activation()self.dense2 = nn.Dense(hidden_features, out_features)self.dropout = nn.Dropout(p=1.0-keep_prob)def construct(self, x):x = self.dense1(x)x = self.activation(x)x = self.dropout(x)x = self.dense2(x)x = self.dropout(x)return xclass ResidualCell(nn.Cell):def __init__(self, cell):super(ResidualCell, self).__init__()self.cell = celldef construct(self, x):return self.cell(x) + xclass TransformerEncoder(nn.Cell):def __init__(self, dim: int, num_layers: int, num_heads: int, mlp_dim: int, keep_prob: float = 1., attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: nn.Cell = nn.LayerNorm):super(TransformerEncoder, self).__init__()layers = []for _ in range(num_layers):normalization1 = norm((dim,))normalization2 = norm((dim,))attention = Attention(dim=dim, num_heads=num_heads, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob)feedforward = FeedForward(in_features=dim, hidden_features=mlp_dim, activation=activation, keep_prob=keep_prob)layers.append(nn.SequentialCell([ResidualCell(nn.SequentialCell([normalization1, attention])), ResidualCell(nn.SequentialCell([normalization2, feedforward]))]))self.layers = nn.SequentialCell(layers)def construct(self, x):return self.layers(x)
ViT模型的输入
ViT模型通过将输入图像划分为多个patch,将每个patch转换为一维向量,并加上类别向量和位置向量作为模型输入。以下是Patch Embedding的代码实现:
class PatchEmbedding(nn.Cell):MIN_NUM_PATCHES = 4def __init__(self, image_size: int = 224, patch_size: int = 16, embed_dim: int = 768, input_channels: int = 3):super(PatchEmbedding, self).__init__()self.image_size = image_sizeself.patch_size = patch_sizeself.num_patches = (image_size // patch_size) ** 2self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)def construct(self, x):x = self.conv(x)b, c, h, w = x.shapex = ops.reshape(x, (b, c, h * w))x = ops.transpose(x, (0, 2, 1))return x
整体构建ViT
以下代码构建了一个完整的ViT模型:
from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameterdef init(init_type, shape, dtype, name, requires_grad):initial = initializer(init_type, shape, dtype).init_data()return Parameter(initial, name=name, requires_grad=requires_grad)class ViT(nn.Cell):def __init__(self, image_size: int = 224, input_channels: int = 3, patch_size: int = 16, embed_dim: int = 768, num_layers: int = 12, num_heads: int = 12, mlp_dim: int = 3072, keep_prob: float = 1.0, attention_keep_prob: float = 1.0, drop_path_keep_prob: float = 1.0, activation: nn.Cell = nn.GELU, norm: Optional[nn.Cell] = nn.LayerNorm, pool: str = 'cls') -> None:super(ViT, self).__init__()self.patch_embedding = PatchEmbedding(image_size=image_size, patch_size=patch_size, embed_dim=embed_dim, input_channels=input_channels)num_patches = self.patch_embedding.num_patchesself.cls_token = init(init_type=Normal(sigma=1.0), shape=(1, 1, embed_dim), dtype=ms.float32, name='cls', requires_grad=True)self.pos_embedding = init(init_type=Normal(sigma=1.0), shape=(1, num_patches + 1, embed_dim), dtype=ms.float32, name='pos_embedding', requires_grad=True)self.pool = poolself.pos_dropout = nn.Dropout(p=1.0-keep_prob)self.norm = norm((embed_dim,))self.transformer = TransformerEncoder(dim=embed_dim, num_layers=num_layers, num_heads=num_heads, mlp_dim=mlp_dim, keep_prob=keep_prob, attention_keep_prob=attention_keep_prob, drop_path_keep_prob=drop_path_keep_prob, activation=activation, norm=norm)self.dropout = nn.Dropout(p=1.0-keep_prob)self.dense = nn.Dense(embed_dim, num_classes)def construct(self, x):x = self.patch_embedding(x)cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))x = ops.concat((cls_tokens, x), axis=1)x += self.pos_embeddingx = self.pos_dropout(x)x = self.transformer(x)x = self.norm(x)x = x[:, 0]if self.training:x = self.dropout(x)x = self.dense(x)return x
模型训练与推理
模型训练
模型训练前,需要设定损失函数、优化器和回调函数。以下是训练ViT模型的代码:
from mindspore.nn import LossBase
from mindspore.train import LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import train# 定义超参数
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()# 构建模型
network = ViT()# 加载预训练模型参数
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"
vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)# 定义学习率
lr = nn.cosine_decay_lr(min_lr=float(0), max_lr=0.00005, total_step=epoch_size * step_size, step_per_epoch=step_size, decay_epoch=10)# 定义优化器
network_opt = nn.Adam(network.trainable_params(), lr, momentum)# 定义损失函数
class CrossEntropySmooth(LossBase):def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):super(CrossEntropySmooth, self).__init__()self.onehot = ops.OneHot()self.sparse = sparseself.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)def construct(self, logit, label):if self.sparse:label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)loss = self.ce(logit, label)return lossnetwork_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 设置检查点
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)# 初始化模型
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")# 训练模型
model.train(epoch_size, dataset_train, callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)], dataset_sink_mode=False)
模型验证
模型验证过程主要应用了ImageFolderDataset,CrossEntropySmooth和Model等接口。以下是验证ViT模型的代码:
dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)trans_val = [transforms.Decode(),transforms.Resize(224 + 32),transforms.CenterCrop(224),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)# 构建模型
network = ViT()# 加载预训练模型参数
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)network_loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=0.1, num_classes=num_classes)# 定义评价指标
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(), 'Top_5_Accuracy': train.Top5CategoricalAccuracy()}if ascend_target:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")# 验证模型
result = model.eval(dataset_val)
print(result)
模型推理
在进行模型推理之前,首先要定义一个对推理图片进行数据预处理的方法。以下是推理ViT模型的代码:
dataset_infer = ImageFolderDataset(os.path.join(data_path, "infer"), shuffle=True)trans_infer = [transforms.Decode(),transforms.Resize([224, 224]),transforms.Normalize(mean=mean, std=std),transforms.HWC2CHW()
]dataset_infer = dataset_infer.map(operations=trans_infer, input_columns=["image"], num_parallel_workers=1)
dataset_infer = dataset_infer.batch(1)# 读取推理数据
for i, image in enumerate(dataset_infer.create_dict_iterator(output_numpy=True)):image = image["image"]image = ms.Tensor(image)prob = model.predict(image)label = np.argmax(prob.asnumpy(), axis=1)mapping = index2label()output = {int(label): mapping[int(label)]}print(output)show_result(img="./dataset/infer/n01440764/ILSVRC2012_test_00000279.JPEG", result=output, out_file="./dataset/infer/ILSVRC2012_test_00000279.JPEG")
相关文章:

【MindSpore学习打卡】应用实践-计算机视觉-深入解析 Vision Transformer(ViT):从原理到实践
在近年来的深度学习领域,Transformer模型凭借其在自然语言处理(NLP)中的卓越表现,迅速成为研究热点。尤其是基于自注意力(Self-Attention)机制的模型,更是推动了NLP的飞速发展。然而,…...

Debezium系列之:支持在一个数据库connector采集中过滤某些表的删除事件
Debezium系列之:支持在一个数据库connector采集中过滤某些表的删除事件 一、需求二、相关技术三、参数设置四、消费数据一、需求 在一个数据库的connector中采集了多张表,部分表存在数据归档的业务场景,会定期从表中删除历史数据,希望能过滤掉存在数据归档这些表的删除事件…...

SQL Server端口配置指南:最佳实践与技巧
1. 引言 SQL Server通常使用默认端口1433进行通信。为了提高安全性和性能,正确配置SQL Server的端口非常重要。本指南将帮助您了解如何配置和优化SQL Server的端口设置,以满足不同环境和需求。 2. 端口配置基础 2.1 默认端口 SQL Server的默认端口是…...

FastGPT 报错:undefined 该令牌无权使用模型:gpt-3.5-turbo (request id: xxx)
目录 一、FastGPT 报错 二、解决方法 一、FastGPT 报错 进行对话时 FastGPT 报错如下所示。 [Error] 2024-07-01 09:25:23 sse error: undefined 该令牌无权使用模型:gpt-3.5-turbo (request id: xxxxx) {message: 403 该令牌无权使用模型:gpt-3.5-turbo (request id: x…...

springboot系列八: springboot静态资源访问,Rest风格请求处理, 接收参数相关注解
文章目录 WEB开发-静态资源访问官方文档基本介绍快速入门注意事项和细节 Rest风格请求处理基本介绍应用实例注意事项和细节思考题 接收参数相关注解基本介绍应用实例PathVariableRequestHeaderRequestParamCookieValueRequestBodyRequestAttributeSessionAttribute ⬅️ 上一篇…...

# 职场生活之道:善于团结
在职场这个大舞台上,每个人都是演员,也是观众。要想在这个舞台上站稳脚跟,除了专业技能,更要学会如何与人相处,如何团结他人。团结,是职场生存的重要法则之一。 1. 主动团结:多一个朋友&#x…...

go sync包(五) WaitGroup
WaitGroup sync.WaitGroup 可以等待一组 Goroutine 的返回,一个比较常见的使用场景是批量发出 RPC 或者 HTTP 请求: requests : []*Request{...} wg : &sync.WaitGroup{} wg.Add(len(requests))for _, request : range requests {go func(r *Reque…...

基于深度学习的相机内参标定
基于深度学习的相机内参标定 相机内参标定(Camera Intrinsic Calibration)是计算机视觉中的关键步骤,用于确定相机的内部参数(如焦距、主点位置、畸变系数等)。传统的标定方法依赖于已知尺寸的标定板,通常…...

适合金融行业的国产传输软件应该是怎样的?
对于金融行业来说,正常业务开展离不开文件传输场景,一般来说,金融行业常用的文件传输工具有IM通讯、邮件、自建文件传输系统、FTP应用、U盘等,这些传输工具可以基础实现金融机构的文件传输需求,但也存在如下问题&#…...

昇思25天学习打卡营第9天|MindSpore使用静态图加速(基于context的开启方式)
在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。 在静态图模式下,MindSpore通过源码转换的方式,将Python的源码转换成中间表达IR(Intermediate Repr…...

class类和style内联样式的绑定
这里的绑定其实就是v-bind的绑定,如代码所示,div后面的引号就是v-bind绑定,然后大括号将整个对象括起来,对象内先是属性,属性后接的是变量,这个变量是定义在script中的,后通过这个变量ÿ…...

3033.力扣每日一题7/5 Java
博客主页:音符犹如代码系列专栏:算法练习关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 首先创建一个与…...

GPT-5:下一代AI如何彻底改变我们的未来
GPT-5 发布前瞻:技术突破与未来展望 随着科技的飞速发展,人工智能领域不断迎来新的突破。根据最新消息,OpenAI 的首席技术官米拉穆拉蒂在一次采访中确认,GPT-5 将在一年半后发布,并描述了其从 GPT-4 到 GPT-5 的飞跃如…...

重载一元运算符
自增运算符 #include<iostream> using namespace std; class CGirl { public:string name;int ranking;CGirl() { name "zhongge"; ranking 5; }void show() const{ cout << "name : "<<name << " , ranking : " <…...

10元 DIY 一个柔性灯丝氛围灯
之前TikTok上特别火的线性氛围灯Augelight刚出来的时候一度卖到80多美金,国内1688也能到400多人民币。 随着各路国内厂商和DIY创客的跟进,功能变多的同时价格一路下滑,虽然有的质感的确感人,但是便宜啊。 甚至关注的up有把成本搞到…...

表单自定义组件 - 可选择卡片SelectCard
import React from react; import styles from ./index.module.less;type OptionsType {/*** 每个item渲染一行,第0项为标题*/labels?: any[];/*** 自定义渲染内容*/label?: string | React.ReactNode;value: any; }; interface IProps {value?: any;onChange?…...

Ubuntu / Debian安装FTP服务
本章教程,记录在Ubuntu中安装FTP服务的具体步骤。FTP默认端口:21 1、安装 pure-ftpd sudo apt-get install pure-ftpd2、修改默认配置 # 与 centos 不同,这里需要在 /etc/pure-ftpd/conf 文件夹下执行下列命令,增加对应配置文件: # 创建 /etc/pure-ftpd/conf/PureDB 文件…...

若依 Vue 前端分离 3.8.8 版中生成的前端代码中关于下拉框只有下拉箭头的问题
生成代码修改前 <el-form-item label"课程学科" prop"subject"><el-select v-model"queryParams.subject" placeholder"请选择课程学科" clearable><el-optionv-for"dict in course_subject":key"dict…...

C++把一个类封装成动态链接库
一、步骤 1. 创建类头文件 首先,定义你要封装的类。例如,创建一个名为MyClass的类: // MyClass.h #pragma once#ifdef MYCLASS_EXPORTS #define MYCLASS_API __declspec(dllexport) #else #define MYCLASS_API __declspec(dllimport) #end…...

每天一个项目管理概念之项目章程
项目管理中,项目章程扮演着至关重要的角色。它是项目正式启动的标志,为项目的执行提供法律和组织上的认可。项目章程是项目管理知识体系(PMBOK)中定义的关键文档之一,对于确保项目的顺利进行具有决定性的影响。 定义与…...

c++11新特性-4-返回类型后置
文章目录 返回类型后置1.基本语法 返回类型后置 1.基本语法 auto func(参数1,参数2,参数3,...)->decltype(参数表达式) {...... }例如: template<typename T,typename U> auto add(T t,U u)->decltype(t u) {retu…...

Linux-C语言实现一个进度条小项目
如何在linux中用C语言写一个项目来实现进度条?(如下图所示) 我们知道\r是回车,\n是换行(且会刷新) 我们可以用 \r 将光标移回行首,重新打印一样格式的内容,覆盖旧的内容,…...

vue使用glide.js实现轮播图(可直接复制使用)
效果图 可以实现自动轮播,3种切换方式:直接滑动图片、点击两侧按钮、点击底部按钮 体验链接:http://website.livequeen.top 实现 一、引入依赖 1、控制台引入依赖 npm install glidejs/glide 2、在css中引用 <style scoped> import glidejs/g…...

TK养号工具开发会用上的源代码科普!
在当今数字化时代,社交媒体平台的崛起使得网络账号的维护与管理变得日益重要,其中,TK作为一款备受欢迎的社交媒体平台,吸引了大量用户。 在TK上进行账号养护,即通过各种方式提升账号权重、增加曝光量,已成…...

信创-办公软件应用工程师认证
随着国家对信息技术自主创新的战略重视程度不断提升,信创产业迎来前所未有的发展机遇。未来几年内,信创产业将呈现市场规模扩大、技术创新加速、产业链完善和国产化替代加速的趋势。信创人才培养对于推动产业发展具有重要意义。应加强高校教育、建立人才…...

数组操作forEach和map
forEach和map的相同点 1、都是循环遍历数组中的每一项 2、入参匿名函数都支持三个参数,当前项item,当前项索引index,原始数组arr;匿名函数中的this都指向window 3、都可以通过return跳过本次循环 4、都无法通过使用 break 语句来中…...

流式处理应用场景与流式计算处理框架选择建议
文章目录 前言使用场景如何选择流式处理框架 前言 在之前的文章中我们介绍了如何进行流式处理——从一般性的概念和模式说起,并列举了一些Streams的例子: 流式处理相关概念总结说明流式处理设计模式总结说明Kafka Streams 架构概览 接下来的文章将介绍…...

2024年软件测试岗必问的100+个面试题【含答案】
一、基础理论 1、开场介绍 介绍要领:个人基本信息、工作经历、之前所做过的工作及个人专长或者技能优势。扬长避短,一定要口语化,语速适中。沟通好的就多说几句,沟通不好的话就尽量少说两句。举例如下: 面试官你好&…...

A4-C四驱高防轮式巡检机器人
在当今数字化和智能化迅速发展的时代,旗晟智能带来了一款革命性的创新产品——A4-C四驱高防轮式巡检机器人。这款机器人以其卓越的性能和多功能性,为工业巡检领域带来了全新的解决方案。 一、产品亮点 1、四驱动力与高防护设计 四驱高防轮式巡检机器人…...

Https网站如何申请免费的SSL证书及操作使用指南
前言 在当今互联网环境下,HTTPS已成为网站安全的标配,它通过SSL/TLS协议为网站数据传输提供加密,保障用户信息的安全。申请并部署免费SSL证书,不仅能够提升网站的专业形象,还能增强用户信任。本文将详细介绍如何在知名…...