阶段总结——基于深度学习的三叶青图像识别
阶段总结——基于深度学习的三叶青图像识别
文章目录
- 一、计算机视觉图像分类系统设计
- 二、训练模型
- 2.1. 构建数据集
- 2.2. 网络模型选择
- 2.3. 图像数据增强与调参
- 2.4. 部署模型到web端
- 2.5. 开发图像识别小程序
- 三、实验结果
- 3.1. 模型训练
- 3.2. 模型部署
- 四、讨论
- 五、参考文献:
一、计算机视觉图像分类系统设计
三叶青图像识别研究简概
如图1所示,图像分类系统从输入图像开始,经过预处理,进行特征选择和提取,之后经过分类器进行分类,得出最后的预测结果,并输出。在获得训练样本之前,所有的图片都进行了预处理、归一化处理为固定分辨率的图片输入至网络中,然后对其进行特征选择和提取,进行训练得到分类器,从而达到预测目标的任务[1]。

图 1 图像分类系统图
二、训练模型
2.1. 构建数据集
考虑到最终是根据三叶青块根、叶片图片进行训练,并且是根据省份产地进行分类。故本实验的类别目前共有六种:云南省、广西省、未知、浙江省、贵州省、陕西省。其中未知类别的图片来自于从网络上爬取和本地相册中的图片;至于另外五种类别的图片则是自己构建的。获得图片数据集后,则是统一数据集图片的格式、大小。前面共采集了9214张图片,之后便是将数据集按照比例6:2:2分割为训练集、验证集、测试集。各类别图像数量的统计表格如表1所示。

表 1 各类别图像数量的统计
2.2. 网络模型选择
由于考虑到常规的CNN,推理需要很大的计算量,很难应用在移动端等资源受限的场景中。只有通过复杂的裁剪,量化才有可能勉强部署到移动端。本实验采用了MobileNetV3-Large模型,是谷歌提出的轻量化网络架构,引入MobileNetV1的深度可分离卷积、MobileNetV2的具有线性瓶颈的倒残差结构、加入神经网络架构搜索(NAS)和h-swish激活函数,并引入SE通道注意力机制,性能和速度都表现优异[2]。其网络模型结构如图2所示

图 2 MobileNetV3_Large模型架构
2.3. 图像数据增强与调参
在训练之前,先对训练集进行数据增强,通过随即裁剪、缩放图像、随机更改亮度、对比度和饱和度等方法对数据进行增强。之后使用迁移学习方法来训练模型,对MobileNetV3-Large模型进行微调,即改变模型的分类头,使输出大小与数据集的类别数相匹配,为6,故要将模型的最后一层1²×1280改为1²×6。
最后使用随机梯度下降(SGD)优化器,用于更新网络中的参数以最小化损失函数,使用网格搜索函数来搜索最佳超参数组合。
2.4. 部署模型到web端
使用flask+bootstrap+jquery+mysql搭建三叶青在线识别网站;最后使用nginx+gunicorn部署网站在腾讯云上,并配置SSL证书,方便后面微信小程序调用此网站的后端代码。
该网站实现了登录注册、在线识别、图片瀑布流展示、用户数据展示以及其它等功能。
2.5. 开发图像识别小程序
使用uniapp+微信开发者工具+flask后端开发三叶青图像识别微信小程序。此微信小程序主要分为三叶青图像识别功能、图片瀑布流展示、历史记录、登录/注册功能等。
三、实验结果
3.1. 模型训练
其中设置样本批量大小batch_size为128;类别数量num_classes为6;学习率lr为1e-4;权重衰减wd为1e-4;动量momentum为0.9;学习率衰减的周期lr_period为2;学习率衰减的比例lr_decay为1。训练时设置的训练总轮数num_epochs为300;在Epoch197时验证集的准确度最高。运行结果如图3

图 3 模型训练结果
最后,训练集的损失为0.070,训练集的准确度为0.977,验证集的准确度为0.967,测试集上的准确度为0.9718。其中top_n预测正确的概率为99.84%(即在预测得到的置信度排前三的类别中有正确类别的概率)。除了上述的损失、准确率和top-n准确率,还有许多其他的模型精度评估指标,例如分类报告、各类别准确率(如表2所示)、混淆矩阵、PR曲线、AUC-ROC曲线(如图4所示)。

表 2 分类报告与各类别准确率

图 4 混淆矩阵、PR曲线、ROC曲线
3.2. 模型部署
利用pytorch框架训练得到的.pth模型文件转换为onnx文件,并使用ONNX
Runtime来执行模型推理。在此基础上,我们开发了一个三叶青块根图像产地鉴别的在线识别网站(https://www.whtuu.cn),以及一个微信小程序(三叶识青),使得用户可以在各种设备和平台上方便地使用我们的模型进行预测。
四、讨论
本研究的图像分类任务采用了MobileNetV3-Large模型,通过对模型的微调训练、测试、验证工作,对于采集的多产地的三叶青块根图像完成了图像分类,达到了很高的识别准确率,并且识别速度快,模型部署在web端和移动端,操作方便。
但是在此次研究中也发现了一些问题,(1)若想要提高识别率,数据集的构建至关重要,提供的训练集一定要大量、各类别的样本量也要平均,差异不能过大;(2)要采集不同背景下的三叶青块根照片,这样虽然会让识别率降低,但是在实际应用中却是十分必要的;(3)图像数据增强和调参过程很重要,对于模型的精度的提升很大;(4)本研究初步计划同时根据三叶青的叶片照片进行产地分类。然而,由于时间限制,这部分功能未能实现。尽管如此,在web端和移动端仍保留了叶片分类的接口,以便于未来研究和开发。
五、参考文献:
[1] 刘加峰,高子啸,段元民,等. 基于深度学习的中药材饮片图像识别[J].北京生物医学工程,2021,40( 4) : 605-608.
[2] A. Howard et al., “Searching for MobileNetV3,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 1314-1324, doi: 10.1109/ICCV.2019.00140.
相关文章:
阶段总结——基于深度学习的三叶青图像识别
阶段总结——基于深度学习的三叶青图像识别 文章目录 一、计算机视觉图像分类系统设计二、训练模型2.1. 构建数据集2.2. 网络模型选择2.3. 图像数据增强与调参2.4. 部署模型到web端2.5. 开发图像识别小程序 三、实验结果3.1. 模型训练3.2. 模型部署 四、讨论五、参考文献&#…...
深度解析Java世界中的对象镜像:浅拷贝与深拷贝的奥秘与应用
在Java编程的浩瀚宇宙中,对象拷贝是一项既基础又至关重要的技术。它直接关系到程序的性能、资源管理及数据安全性。然而,提及对象拷贝,不得不深入探讨其两大核心类型:浅拷贝(Shallow Copy)与深拷贝…...
Python | Leetcode Python题解之第218题天际线问题
题目: 题解: class Solution:def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]:buildings.sort(keylambda bu:(bu[0],-bu[2],bu[1]))buildings.append([inf,inf,inf])heap [[-inf,-inf,-inf]]ans []for l,r,h in buildings:i…...
使用Spring Boot构建RESTful API
使用Spring Boot构建RESTful API 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨如何使用Spring Boot构建RESTful API。通过这篇…...
Spark快速大数据分析PDF下载读书分享推荐
《Spark 快速大数据分析》是一本为 Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。不过,本书绝不仅仅限于 Spark 的用法,它对 Spark 的核心概念和基本原理也有较为全面的介绍,让读者能…...
Centos7离线安装mysql-5.7.44bundle包
在 CentOS 7 上安装 mysql-5.7.44-1.el7.x86_64.rpm-bundle.tar(这里假设这是一个包含多个 RPM 包的 tar 归档文件)的步骤通常涉及解压归档文件、安装 RPM 包以及配置 MySQL 服务。以下是一个详细的步骤指南: 1. 下载和解压 RPM 包 首先&am…...
ROS melodic版本卸载---Ubuntu18.04
sudo apt-get remove ros-melodic-desktop-fullsudo apt-get remove gazebo* 删除依赖关系 sudo apt autoremove删除与ros关联的所有文件 sudo apt-get purge ros-* sudo rm -rf /etc/ros找到.bashrc文件删除含ros的环境配置语句 全部删除完毕,可以去计算机下的…...
Java面试之Java多线程常见面试题
1、什么是线程? 定义:线程是程序中的执行路径,是操作系统进行调度的基本单位。它允许程序并发执行多个任务,提高程序的响应速度和资源利用率。 2、为什么需要线程? 1、提高并发性:线程允许程序同时执行多…...
Java [ 基础 ] Java面向对象编程 (OOP) ✨
目录 ✨探索Java基础 Java面向对象编程 (OOP) ✨ 引言 1. 类和对象 2. 封装 3. 继承 4. 多态 5. 抽象 结论 ✨探索Java基础 Java面向对象编程 (OOP) ✨ 引言 Java是一门以面向对象编程(OOP)为基础的编程语言。OOP的核心概念包括类和对象、封装…...
敏捷开发笔记(第9章节)--开放-封闭原则(OCP)
目录 1:PDF上传链接 9.1 开放-封闭原则(OCP) 9.2 描述 9.3 关键是抽象 9.3.1 shape应用程序 9.3.2 违反OCP 糟糕的设计 9.3.3 遵循OCP 9.3.4 是的,我说谎了 9.3.5 预测变化和“贴切的”结构 9.3.6 放置吊钩 1.只受一次…...
苹果电脑清理app垃圾高效清理,无需专业知识
在我们的日常使用中,苹果电脑以其优雅的设计和强大的功能赢得了广泛的喜爱。然而,即便是最高效的设备,也无法免俗地积累各种不必要的文件和垃圾,特别是app垃圾。所以,苹果电脑清理app垃圾高效清理,对于大多…...
【算法】(C语言):快速排序(递归)、归并排序(递归)、希尔排序
快速排序(递归) 左指针指向第一个数据,右指针指向最后一个数据。取第一个数据作为中间值。右指针指向的数据 循环与中间值比对,若大于中间值,右指针往左移动一位,若小于中间值,右指针停住。右…...
模型驱动开发(Model-Driven Development,MDD):提高软件开发效率与一致性的利器
目录 前言1. 模型驱动开发的原理1.1 什么是模型驱动开发1.2 MDD的核心思想 2. 模型驱动开发的优势2.1 提高开发效率2.2 确保代码一致性2.3 促进沟通和协作2.4 方便维护和扩展 3. 实现模型驱动开发的方法3.1 选择合适的建模工具3.1.1 UML3.1.2 BPMN3.1.3 SysML 3.2 建模方法3.2.…...
记录discuz修改用户的主题出售价格
大家好,我是网创有方的站长,今天遇到了需要修改discuz的主题出售价格。特此记录下 方法很简单: 进入用于组-》选择论坛-》批量修改...
WGAN(Wassertein GAN)
WGAN E x ∼ P g [ log ( 1 − D ( x ) ) ] E x ∼ P g [ − log D ( x ) ] \begin{aligned} & \mathbb{E}_{x \sim P_g}[\log (1-D(x))] \\ & \mathbb{E}_{x \sim P_g}[-\log D(x)] \end{aligned} Ex∼Pg[log(1−D(x))]Ex∼Pg[−logD(x)] 原始 GAN …...
Maven基本使用
1. Maven前瞻 Maven官网:https://maven.apache.org/ Maven镜像:https://mvnrepository.com 1.1、Maven是什么 Maven是一个功能强大的项目管理和构建工具,可以帮助开发人员简化Java项目的构建过程。 在Maven中,使用一个名为 pom.…...
在Linux系统中配置GitHub的SSH公钥
在Linux系统中配置GitHub的SSH公钥,可以让您无需频繁输入密码即可与GitHub仓库进行交互,提高工作效率。以下是配置步骤: 第一步: 检查SSH密钥是否存在 首先,检查您的用户目录下的.ssh文件夹中是否已有SSH密钥。打开终端࿰…...
小酌消烦暑|人间正清欢
小暑是二十四节气之第十一个节气。暑,是炎热的意思,小暑为小热,还不十分热。小暑虽不是一年中最炎热的时节,但紧接着就是一年中最热的节气大暑,民间有"小暑大暑,上蒸下煮"之说。中国多地自小暑起…...
C语言结构体的相关知识
前言 从0开始记录我的学习历程,我会尽我所能,写出最最大白话的文章,希望能够帮到你,谢谢。 1.结构体类型的概念及定义 1.1、概念: 结构体是一种构造类型的数据结构, 是一种或多种基本类型或构造类型的数…...
RabbitMQ入门教程(精细版二带图)
目录 六 RabbitMQ工作模式 6.1Hello World简单模式 6.1.1 什么是简单模式 6.1.2 RabbitMQ管理界面操作 6.1.3 生产者代码 6.1.4 消费者代码 6.2 Work queues工作队列模式 6.2.1 什么是工作队列模式 6.2.2 RabbitMQ管理界面操作 6.2.3 生产者代码 6.2.4 消费者代码 …...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
