【数据分享】全国乡村旅游重点镇(乡)数据(Excel/Shp格式/免费获取)
之前我们分享过从我国文化和旅游部官网整理的2018-2023年我国50个重点旅游城市星级饭店季度经营状况数据(可查看之前发布的文章)!文化和旅游部官网上也分享有很多与旅游相关的常用数据,我们基于官网发布的名单文件整理得到全国乡村旅游重点村数据、全国乡村旅游重点镇(乡)和国家级旅游休闲街区数据。本篇文章我们来看一下全国乡村旅游重点镇(乡)数据,全国乡村旅游重点村和国家级旅游休闲街区数据见另两篇推文。
截至目前,文化和旅游部官网上共享了两批全国乡村旅游重点镇(乡)名单,下图为官网公布第二批名单的通知:

我们对两个批次全国乡村旅游重点镇(乡)名单进行汇总,同时基于名单中旅游镇(乡)的名字(如下图为第二批名单),我们借助地址反查坐标工具得到了旅游镇(乡)的经纬度,有了经纬度就可以生成旅游镇(乡)的空间点位!

本次我们给大家分享的就是基于上述流程整理的全国乡村旅游重点镇(乡)数据,涵盖四个批次共198个旅游重点镇(乡),数据格式为Shp和Excel两种格式。大家可以在公众号回复关键词 262 免费获取该数据!无需转发文章,直接获取!以下为数据的详细介绍:
01 数据预览
首先,我们来看看excel格式的数据,两个批次的全国乡村旅游重点镇(乡)数据汇总在一个文件中,数据字段包括序号、全国乡村旅游重点镇(乡)的名称、所属批次、火星坐标系经度(GCJ02_lng)、火星坐标系纬度(GCJ02_Lat)、百度坐标系经度(BD09_Lng)、百度坐标系纬度(BD09_Lat)、wgs1984经度(WGS84_Lng)、wgs1984纬度(WGS84_Lat)等。我们来预览一下:

下面我们再来看看shp格式的数据,两个批次的全国乡村旅游重点镇(乡)数据汇总在一个文件中,我们来预览下:

02 数据详情
数据来源:
文化和旅游部官网公布的两个批次的全国乡村旅游重点镇(乡)名单,每个批次的公告提供镇(乡)名单的附件。两个批次的名单的官方网址分别为:
- 第一批:https://zwgk.mct.gov.cn/zfxxgkml/zcfg/zcjd/202112/t20211220_929914.html
- 第二批https://zwgk.mct.gov.cn/zfxxgkml/zykf/202212/t20221207_937957.html
我们以第一批数据为例来看一下:

数据处理:
对两个批次全国乡村旅游重点镇(乡)名单进行汇总,同时基于名单中旅游镇(乡)的名字,我们借助地址反查坐标工具得到了旅游镇(乡)的经纬度,基于经纬度进而生成旅游镇(乡)的空间点位!数据预览中对全国重点旅游镇(乡)空间点位可视化的Shp文件
来源于
天地图官方网站提供的审图号为GS(2024)0650号的省级行政边界数据(可查看之前发布的文章)!
数据格式:
Excel和Shp格式
数据坐标系:
GCS_WGS_1984
03 数据获取


相关文章:
【数据分享】全国乡村旅游重点镇(乡)数据(Excel/Shp格式/免费获取)
之前我们分享过从我国文化和旅游部官网整理的2018-2023年我国50个重点旅游城市星级饭店季度经营状况数据(可查看之前发布的文章)!文化和旅游部官网上也分享有很多与旅游相关的常用数据,我们基于官网发布的名单文件整理得到全国乡村…...
停车场小程序的设计
管理员账户功能包括:系统首页,个人中心,车主管理,商家管理,停车场信息管理,预约停车管理,商场收费管理,留言板管理 微信端账号功能包括:系统首页,停车场信息…...
绿色金融相关数据合集(2007-2024年 具体看数据类型)
数据类型: 1.绿色债券数据:2014-2023 2.绿色信贷相关数据:2007-2022 3.全国各省及地级市绿色金融指数:1990-2022 4.碳排放权交易明细数据:2013-2024 5.绿色金融试点DID数据:2010-2023 数据来源&#…...
【matlab 项目工期优化】基于NSGA2/3的项目工期多目标优化(时间-成本-质量-安全)
一 背景介绍 本文分享了一个通用的项目工期优化的案例,决策变量是每个子项目的工期,优化目标是项目的完成时间最小,项目的总成本现值最小,项目的总安全水平最高,项目的总质量水平最高。采用的算法是NSGA2和NSGA3算法。…...
Python考前复习
选择题易错: python3不能完全兼容python2内置函数是python的内置对象之一,无需导入其他模块python中汉字变量合法,如“小李123”合法;但T-C不合法,因为有“-”集合无顺序,不能索引;range(5)[2]…...
虚拟机交叉编译基于ARM平台的opencv(ffmpeg/x264)
背景: 由于手上有一块rk3568的开发板,需要运行yolov5跑深度学习模型,但是原有的opencv不能对x264格式的视频进行解码,这里就需要将ffmpegx264编译进opencv。 但是开发板算力有限,所以这里采用在windows下,安…...
react之错误边界
错误边界实质是指什么 实际上是组件 错误边界捕获什么时候的错误 在渲染阶段的错误 错误边界捕获的是谁的错误 捕获的是子组件的错误 错误边界不能捕获什么错误 1、不能捕获异步代码 2、不能捕获事件处理函数 3、不能捕获服务端渲染 4、不能捕获自身抛出的错误 错误…...
openEuler系统之使用Keepalived+Nginx部署高可用Web集群
Linux系统之使用Keepalived+Nginx部署高可用Web集群 一、本次实践介绍1.1 本次实践简介1.2 本次实践环境规划二、keepalived介绍2.1 keepalived简介2.2 keepalived主要特点和功能2.3 使用场景三、Keepalived和Nginx介绍3.1 Nginx简介3.2 Nginx特点四、master节点安装nginx4.1 安…...
基于图像处理的滑块验证码匹配技术
滑块验证码是一种常见的验证码形式,通过拖动滑块与背景图像中的缺口进行匹配,验证用户是否为真人。本文将详细介绍基于图像处理的滑块验证码匹配技术,并提供优化代码以提高滑块位置偏移量的准确度,尤其是在背景图滑块阴影较浅的情…...
【JavaEE精炼宝库】文件操作(1)——基本知识 | 操作文件——打开实用性编程的大门
目录 一、文件的基本知识1.1 文件的基本概念:1.2 树型结构组织和目录:1.3 文件路径(Path):1.4 二进制文件 VS 文本文件:1.5 其它: 二、Java 操作文件2.1 方法说明:2.2 使用演示&…...
常用排序算法_06_归并排序
1、基本思想 归并排序采用分治法 (Divide and Conquer) 的一个非常典型的应。归并排序的思想就是先递归分解数组,再合并数组。归并排序是一种稳定的排序方法。 将数组分解最小之后(数组中只有一个元素,数组有序);然后…...
14-8 小型语言模型的兴起
过去几年,我们看到人工智能能力呈爆炸式增长,其中很大一部分是由大型语言模型 (LLM) 的进步推动的。GPT-3 等模型包含 1750 亿个参数,已经展示了生成类似人类的文本、回答问题、总结文档等能力。然而,虽然 LLM 的能力令人印象深刻…...
【Linux】:进程创建与终止
朋友们、伙计们,我们又见面了,本期来给大家解读一下有关Linux程序地址空间的相关知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成! C 语 言 专 栏:C语言:从…...
横截面交易策略:概念与示例
数量技术宅团队在CSDN学院推出了量化投资系列课程 欢迎有兴趣系统学习量化投资的同学,点击下方链接报名: 量化投资速成营(入门课程) Python股票量化投资 Python期货量化投资 Python数字货币量化投资 C语言CTP期货交易系统开…...
4.2 投影
一、投影和投影矩阵 我们以下面两个问题开始,问题一是为了展示投影是很容易视觉化的,问题二是关于 “投影矩阵”(projection matrices)—— 对称矩阵且 P 2 P P^2P P2P。 b \boldsymbol b b 的投影是 P b P\boldsymbol b Pb。…...
23种设计模式之装饰者模式
深入理解装饰者模式 一、装饰者模式简介1.1 定义1.2 模式类型1.3 主要作用1.4 优点1.5 缺点 二、模式动机三、模式结构四、 装饰者模式的实现4.1 组件接口4.2 具体组件4.3 装饰者抽象类4.4 具体装饰者4.5 使用装饰者模式4.6 输出结果: 五、 应用场景5.1 图形用户界面…...
数据结构--单链表实现
欢迎光顾我的homepage 前言 链表和顺序表都是线性表的一种,但是顺序表在物理结构和逻辑结构上都是连续的,但链表在逻辑结构上是连续的,而在物理结构上不一定连续;来看以下图片来认识链表与顺序表的差别 这里以动态顺序表…...
2024攻防演练:亚信安全推出MSS/SaaS短期定制服务
随着2024年攻防演练周期延长的消息不断传出,各参与方将面临前所未有的挑战。面对强大的攻击队伍和日益严格的监管压力,防守单位必须提前进行全面而周密的准备和部署。为应对这一形势,亚信安全特别推出了为期三个月的MSS/SaaS短期订阅方案。该…...
基于java+springboot+vue实现的在线课程管理系统(文末源码+Lw)236
摘要 本文首先介绍了在线课程管理系统的现状及开发背景,然后论述了系统的设计目标、系统需求、总体设计方案以及系统的详细设计和实现,最后对在线课程管理系统进行了系统检测并提出了还需要改进的问题。本系统能够实现教师管理,科目管理&…...
每日一更 EFK日志分析系统
需要docker和docker-compose环境 下面时docker-compose.yaml文件 [rootnode1 docker-EFK]# cat docker-compose.yaml version: 3.3services:elasticsearch:image: "docker.elastic.co/elasticsearch/elasticsearch:7.17.5"container_name: elasticsearchrestart: …...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
