自动控制:反馈控制
自动控制:反馈控制
反馈控制(Feedback Control)是一种在控制系统中通过测量输出信号,并将其与期望信号进行比较,产生误差信号,再根据误差信号调整输入来达到控制目标的方法。反馈控制是自动控制系统中最常见和最重要的控制策略之一,广泛应用于工业、自动化、机器人、航空航天等各个领域。
反馈控制的基本原理
反馈控制的基本原理可以概括如下:
- 测量输出:通过传感器或测量装置,实时测量系统的输出信号。
- 计算误差:将测量得到的输出信号与期望的参考信号进行比较,计算误差信号。
- 控制律:根据预先设计的控制律(如比例-积分-微分控制器,PID),计算控制输入。
- 施加控制输入:将计算得到的控制输入施加到系统中,以减小误差,使输出信号逐渐趋近期望值。
反馈控制系统的基本框图如下:
+---------------------+| || 系统 || |+----------+----------+|v+---------+----------+| || 传感器/测量 || |+---------+----------+|v+----------+----------+| || 误差计算 || e = r - y || |+----------+----------+|v+----------+----------+| || 控制律 || |+----------+----------+|v+----------+----------+| || 控制输入 u || |+---------------------+
其中:
- r r r 是期望的参考信号
- y y y 是系统的实际输出信号
- e e e是误差信号,即 e = r − y e = r - y e=r−y
- u u u 是控制输入信号
反馈控制的优点
- 稳定性:反馈控制能够自动调节系统的输入,使系统稳定在期望的输出值附近,即使存在扰动或参数变化。
- 鲁棒性:反馈控制对系统参数的不确定性和外界扰动具有较强的鲁棒性,能够在一定程度上克服模型的不准确性。
- 自动校正:反馈控制能够根据误差自动调整控制输入,使系统输出迅速趋近期望值。
- 广泛适用性:反馈控制适用于各种类型的系统,包括线性系统和非线性系统、时不变系统和时变系统。
常见的反馈控制策略
比例控制(P控制)
比例控制(Proportional Control, P控制)是一种最简单的反馈控制策略。它根据误差信号的比例调整控制输入。其控制律如下:
u ( t ) = K p ⋅ e ( t ) u(t) = K_p \cdot e(t) u(t)=Kp⋅e(t)
其中, K p K_p Kp 是比例增益。
比例-积分-微分控制(PID控制)
PID控制是一种广泛应用的反馈控制策略,由比例控制、积分控制和微分控制三部分组成。其控制律如下:
u ( t ) = K p ⋅ e ( t ) + K i ∫ e ( t ) d t + K d ⋅ d e ( t ) d t u(t) = K_p \cdot e(t) + K_i \int e(t) \, dt + K_d \cdot \frac{d e(t)}{dt} u(t)=Kp⋅e(t)+Ki∫e(t)dt+Kd⋅dtde(t)
其中:
- K p K_p Kp是比例增益
- K i K_i Ki 是积分增益
- K d K_d Kd 是微分增益
滑模控制(Sliding Mode Control, SMC)
滑模控制是一种处理非线性系统和不确定性系统的有效控制策略。它通过设计一个滑模面,并驱动系统状态达到并保持在该滑模面上,从而实现控制目标。
反馈控制的应用
反馈控制在工业和日常生活中有着广泛的应用。例如:
- 温度控制:通过反馈控制,恒温器可以自动调节加热器的功率,使房间温度保持在设定值附近。
- 速度控制:在电动机控制中,反馈控制能够根据速度传感器的反馈信号,调整电动机的输入电压或电流,使电动机的转速保持在期望值。
- 自动驾驶:在自动驾驶系统中,反馈控制能够根据车辆的实际位置和速度,与预定的轨迹进行比较,调整转向角度和速度,使车辆沿着预定路线行驶。
Python代码示例
下面是一个简单的Python代码示例,演示反馈控制的基本原理。假设我们有一个简单的温度控制系统,通过反馈控制保持系统温度在期望值。
import numpy as np
import matplotlib.pyplot as plt# 定义系统参数
dt = 0.1 # 时间步长
t = np.arange(0, 10, dt) # 时间数组
n = len(t)# 初始化状态变量
temperature = np.zeros(n) # 系统温度
desired_temperature = np.ones(n) * 0 # 期望温度
external_disturbance = np.sin(t) * 10 # 外界扰动# 控制器参数
Kp = 2.0 # 比例增益
Ki = 1.0 # 积分增益
Kd = 0.5 # 微分增益# 初始化误差变量
e_prev = 0 # 上一时刻的误差
integral = 0 # 误差积分# 模拟系统
for i in range(1, n):# 计算误差e = desired_temperature[i] - temperature[i-1]# 误差积分integral += e * dt# 误差微分derivative = (e - e_prev) / dt# PID控制器u = Kp * e + Ki * integral + Kd * derivative# 更新系统温度temperature[i] = temperature[i-1] + (u + external_disturbance[i]) * dt# 更新上一时刻的误差e_prev = e# 绘制结果
plt.figure(figsize=(10, 4))
plt.plot(t, desired_temperature, label='Desired Temperature')
plt.plot(t, temperature, label='Actual Temperature')
plt.plot(t, external_disturbance, label='External Disturbance')
plt.xlabel('Time [s]')
plt.ylabel('Temperature')
plt.legend()
plt.title('Feedback Control for Temperature System')
plt.grid(True)
plt.show()

代码解释
- 系统参数和时间数组:定义了时间步长
dt和时间数组t,用来模拟系统在一段时间内的行为。 - 状态变量初始化:初始化了系统温度
temperature、期望温度desired_temperature和外界扰动external_disturbance。 - 控制器参数:定义了PID控制器的比例增益
Kp、积分增益Ki和微分增益Kd。 - 误差变量初始化:初始化了上一时刻的误差
e_prev和误差积分integral。 - 系统模拟:通过迭代计算,在每个时间步长内根据PID控制律计算控制输入,并更新系统温度。
- 结果绘制:使用
matplotlib绘制系统温度、期望温度和外界扰动的变化曲线。
结论
反馈控制是一种通过实时测量系统输出并根据误差调整输入的控制策略,能够有效地提高系统的稳定性、鲁棒性和控制精度。常见的反馈控制策略包括比例控制、比例-积分-微分控制(PID控制)和滑模控制。在实际应用中,反馈控制广泛用于温度控制、速度控制和自动驾驶等领域。结合Python代码示例,可以更直观地理解反馈控制的基本原理和实现方法。
相关文章:
自动控制:反馈控制
自动控制:反馈控制 反馈控制(Feedback Control)是一种在控制系统中通过测量输出信号,并将其与期望信号进行比较,产生误差信号,再根据误差信号调整输入来达到控制目标的方法。反馈控制是自动控制系统中最常…...
sqlite 数据库 介绍
文章目录 前言一、什么是 SQLite ?二、语法三、SQLite 场景四、磁盘文件 前言 下载 目前已经出到了, Version 3.46.0 SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含在一个相对小的C库中。它是…...
【机器学习】机器学习重塑广告营销:精准触达,高效转化的未来之路
📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀目录 📒1. 引言📙2. 机器学习基础与广告营销的结合🧩机器学习在广告营销中的核心应用领域🌹用…...
常见的Java运行时异常
常见的Java运行时异常 1、ArithmeticException(算术异常)2、ClassCastException (类转换异常)3、IllegalArgumentException (非法参数异常)4、IndexOutOfBoundsException (下标越界异常…...
CANoe的capl调用Qt制作的dll
闲谈 因为Qt封装了很多个人感觉很好用的库,所以一直想通过CAPL去调用Qt实现一些功能,但是一直没机会(网络上也没看到这方面的教程),这次自己用了两天,踩了很多坑,终于是做成了一个初步的调用方…...
论如何搭建属于自己的服务器?
在现如今的数字化时代中,为了能够搭建网站和运行应用程序,很多人选择搭建属于自己的服务器,下面我们就来了解一下如何搭建服务器吧! 搭建服务器我们首先需要选择适合自身需求的硬件设备,其中包含内存、CPU和存储等配置…...
【C++ OpenCV】机器视觉-二值图像和灰度图像的膨胀、腐蚀、开运算、闭运算
原图 结果图 //包含头文件 #include <opencv2/opencv.hpp>//命名空间 using namespace cv; using namespace std;//全局函数声明部分//我的腐蚀运算 Mat Erode(Mat src, Mat Mask, uint32_t x0, uint32_t y0) {uint32_t x 0, y 0;Mat dst(src.rows, src.cols, CV_8U…...
STMF4学习笔记RTC(天空星)
前言:本篇笔记参考嘉立创文档,连接放在最后 #RTC相关概念定义 Real-Time Clock 缩写 RTC 翻译 实时时钟,是单片机片内外设的一种,作用于提供准确的时间还有日期,这个外设有独立的电源,当单片机停止供电…...
vue数组变化的侦测***
数组变化的侦测 变更方法 vue能够侦听响应式数组的变更方法,并在他们被调用时触发相关更新。这些变更方法包括: push()pop()shift()unshift()splice()sort()reverse() 替换一个数组 变更方法,顾名思义,就是会对调用他们的原数组进…...
k8s-第十节-Ingress
Ingress 介绍 Ingress 为外部访问集群提供了一个 统一 入口,避免了对外暴露集群端口;功能类似 Nginx,可以根据域名、路径把请求转发到不同的 Service。可以配置 https 跟 LoadBalancer 有什么区别? LoadBalancer 需要对外暴露…...
webrtc gcc详解
webrtc的gcc算法(Google Congestion Control),貌似国内很多文章都没有细讲,原理是怎么样的,具体怎么进行计算的。这里详解一下gcc。 gcc算法,主要涉及到: 拥塞控制的关键信息和公式 卡曼滤波算法 gcc如何使用卡曼滤…...
Linux多进程和多线程(七)进程间通信-信号量
进程间通信之信号量 资源竞争 多个进程竞争同一资源时,会发生资源竞争。 资源竞争会导致进程的执行出现不可预测的结果。 临界资源 不允许同时有多个进程访问的资源, 包括硬件资源 (CPU、内存、存储器以及其他外 围设备) 与软件资源(共享代码段、共享数据结构) …...
【项目日记(一)】梦幻笔耕-数据层实现
❣博主主页: 33的博客❣ ▶️文章专栏分类:项目日记◀️ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你了解更多项目内容 目录 1.前言2.后端模块3数据库设计4.mapper实现4.1UserInfoMapper4.2BlogMapper 5.总结 1.…...
ElementUI的中国省市区级联数据插件element-china-area-data
安装 npm install element-china-area-data -S import 使用 import {provinceAndCityData,pcTextArr,regionData,pcaTextArr,codeToText, } from "element-china-area-data"; provinceAndCityData省市二级联动数据,汉字+coderegionData省市区三级联动数据pcTextAr…...
Kotlin算法:把一个整数向上取值为最接近的2的幂指数值
Kotlin算法:把一个整数向上取值为最接近的2的幂指数值 import kotlin.math.ln import kotlin.math.powfun main(args: Array<String>) {val number intArrayOf(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)number.forEach {println("$…...
简单且循序渐进地查找软件中Bug的实用方法
“Bug”这个词常常让许多开发者感到头疼。即使是经验丰富、技术娴熟的开发人员在开发过程中也难以避免遭遇到 Bug。 软件中的故障会让程序员感到挫败。我相信在你的软件开发生涯中,也曾遇到过一些难以排查的问题。软件中的错误可能会导致项目无法按时交付。因此&…...
基于springboot+vue+uniapp的高校宿舍信息管理系统小程序
开发语言:Java框架:springbootuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#…...
(完整音频)DockerHub、OpenAI、GitCode,脱钩时代,我们该如何自处?
本期主播 朱峰:「津津乐道播客网络」创始人,产品及技术专家。(微博:zhufengme)高春辉:「科技乱炖」主播。“中国互联网站长第一人”,科技、互联网领域的连续创业者。(微博࿱…...
macos 10.15系统下载包,macOS Catalina for mac
macOS Catalina 让你喜欢的种种 Mac 体验都更进一步。你可以领略音乐、播客这两款全新 Mac app 的表演;在 Mac 上畅享各款自己心爱的 iPad app;拿起 iPad 和 Apple Pencil,拓展工作空间,释放创意灵感;再打开那些平时常…...
uni.showShareMenu({}) 和 uni.showShareImageMenu({}) 的区别
ChatGPT uni.showShareMenu({}) 和 uni.showShareImageMenu({}) 是 Uni-app 中两个不同的 API,它们的作用和用法有所不同: uni.showShareMenu({}) 作用:用于显示当前页面的分享菜单,通常显示在页面的右上角(类似于微…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
