当前位置: 首页 > news >正文

Pandas 进阶 —— 数据转换、聚合与可视化

引言

在数据分析的旅程中,Pandas 库提供了从数据转换到聚合再到可视化的全面解决方案。上篇我们掌握了数据的导入和清洗,本篇我们将探索如何通过 Pandas 对数据进行更高级的处理,包括数据转换、聚合分析以及可视化展示。

数据转换

数据转换是数据分析中的重要环节,它涉及到数据结构的调整和变换,以适应不同的分析需求。

  • 数据重塑:通过 melt(), pivot(), pivot_table() 函数,我们可以将数据从宽格式转换为长格式,或者重新排列数据的行列,以便于分析。
  • 数据类型转换:使用 astype() 函数可以转换数据的类型,例如将字符串转换为数值类型,以便进行数值计算。
  • 数据排序sort_values() 函数可以用来根据某个或某些列的值进行排序,这对于数据的直观理解和后续分析至关重要。

代码示例:

# 将宽格式数据转换为长格式
df_long = df.melt(id_vars=['Name', 'Age'], value_vars=['Gender', 'Salary'], var_name='Attribute', value_name='Value')
print(df_long)# 转换数据类型
df['Age'] = df['Age'].astype(int)# 根据薪资进行排序
df_sorted = df.sort_values(by='Salary', ascending=False)
数据聚合

数据聚合是通过某种方式将数据汇总起来,以得出有意义的统计信息。

  • 分组和聚合groupby() 函数结合 agg() 可以对数据进行分组,并应用多种聚合函数,如求和、平均、最大值等。
  • 窗口函数rolling()expanding() 函数用于执行移动窗口计算,这在时间序列分析中尤其有用。

代码示例:

# 按性别分组并计算平均薪资
gender_salary_avg = df.groupby('Gender')['Salary'].mean()
print(gender_salary_avg)# 使用窗口函数计算薪资的移动平均值
salary_rolling_mean = df['Salary'].rolling(window=3).mean()
时间序列分析

时间序列分析是数据分析中的一个重要领域,特别是在处理具有时间戳的数据时。

  • 解析日期时间to_datetime() 函数用于将字符串转换为日期时间格式,这是进行时间序列分析的第一步。
  • 时间索引:使用 set_index() 可以将日期时间设置为 DataFrame 的索引,从而方便进行时间序列的切片和重采样。
  • 重采样resample() 函数用于更改时间序列的频率,进行上采样或下采样。

代码示例:

# 解析日期时间并设置为索引
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)# 按月重采样并计算平均薪资
monthly_avg_salary = df.resample('M').mean()['Salary']
数据可视化

数据可视化是数据分析的直观展示,Pandas 与 Matplotlib 等绘图库的结合使用,可以创建各种图表。

  • 基本绘图:使用 plot() 函数可以快速绘制折线图、柱状图、饼图等。
  • 高级图表:包括直方图、箱线图、散点图等,这些图表可以帮助我们发现数据的分布、异常值和相关性。

代码示例:

import matplotlib.pyplot as plt# 绘制薪资的直方图
df['Salary'].plot(kind='hist')
plt.title('Salary Distribution')
plt.xlabel('Salary')
plt.ylabel('Frequency')
plt.show()# 绘制薪资和年龄的散点图
df.plot(kind='scatter', x='Age', y='Salary')
plt.title('Salary vs Age')
plt.xlabel('Age')
plt.ylabel('Salary')
plt.show()
结语

通过本文的学习,我们不仅掌握了 Pandas 的数据转换、聚合和可视化技巧,而且通过具体的代码示例,能够将这些理论知识应用到实际的数据分析工作中。数据的探索和分析是一个不断深入的过程,Pandas 提供了强大的工具来帮助我们从不同角度理解和解释数据。希望你能将这些技能运用到自己的项目中,不断探索和发现数据的潜在价值。

相关文章:

Pandas 进阶 —— 数据转换、聚合与可视化

引言 在数据分析的旅程中,Pandas 库提供了从数据转换到聚合再到可视化的全面解决方案。上篇我们掌握了数据的导入和清洗,本篇我们将探索如何通过 Pandas 对数据进行更高级的处理,包括数据转换、聚合分析以及可视化展示。 数据转换 数据转换…...

华为OD机试 - 来自异国的客人(Java 2024 D卷 100分)

华为OD机试 2024D卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(D卷C卷A卷B卷)》。 刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的代码注释、样例测…...

期末上分站——计组(3)

复习题21-42 21、指令周期是指__C_。 A. CPU从主存取出一条指令的时间 B. CPU执行一条指令的时间 C. CPU从主存取出一条指令的时间加上执行这条指令的时间。 D. 时钟周期时间 22、微型机系统中外设通过适配器与主板的系统总线相连接,其功能是__D_。 A. 数据缓冲和…...

IDA*——AcWing 180. 排书

IDA* 定义 IDA*(Iterative Deepening A*)是一种结合了深度优先搜索(DFS)的递归深度限制特性和A搜索的启发式估价函数的搜索算法。它主要用于解决启发式搜索问题,尤其是当搜索空间很大或者搜索成本不确定时。 IDA* 是…...

【云计算】公有云、私有云、混合云、社区云、多云

公有云、私有云、混合云、社区云、多云 1.云计算的形态1.1 公有云1.2 私有云1.3 混合云1.4 社区云1.5 多云1.5.1 多云和混合云之间的关系1.5.2 多云的用途1.5.3 影子 IT 和多云1.5.4 优缺点 2.不同云形态的对比 1.云计算的形态 张三⾃⼰在家做饭吃,这是 私有云&…...

MySQL中的MVCC解析

MySQL中的MVCC解析 多版本并发控制是MySQL中实现高并发的一种关键技术。通过对数据进行多版本的管理,MVCC能够在保证数据一致性的同时,提高数据库的并发性能。本文将深入探讨MySQL中的MVCC机制,包括其原理、实现方式以及优势。 MVCC的原理 …...

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA的生日聚会(100分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 &#x1f…...

初识STM32:芯片基本信息

STM32简介 STM32是ST公司基于ARM公司的Cortex-M内核开发的32位微控制器。 ARM公司是全球领先的半导体知识产权(IP)提供商,全世界超过95%的智能手机和平板电脑都采用ARM架构。 ST公司于1987年由意大利的SGS微电子与法国的Thomson半导体合并…...

Zabbix 配置PING监控

Zabbix PING监控介绍 如果需要判断机房的网络或者主机是否正常,这就需要使用zabbix ping,Zabbix使用外部命令fping处理ICMP ping的请求,在基于ubuntu APT方式安装zabbix后默认已存在fping程序。另外zabinx_server配置文件参数FpingLocation默…...

异常解决(三)-- Wandb fails with ServiceStartProcessError

原文链接:https://github.com/wandb/wandb/issues/5765 我的环境配置: Python3.8.16 Wandb0.17.4 在使用Wandb记录实验数据时, 报以下错误: ServiceStartProcessError: The wandb service process exited with 1. Ensure that s…...

Qt调用Matlab(一)

目录 1 概述2 创建Qt工程2.1 增加Matlab支持3 调用Matlab3.1 widget.h3.2 widget.cpp4 运行4.1 配置4.2 运行1 概述 MATLAB是MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域…...

网络爬虫(二) 哔哩哔哩热榜高频词按照图片形状排列

我们有时候需要爬取结果生成为自定义的词云图 生成自定义的词云图通常需要以下步骤: 1. 爬取数据:使用爬虫工具或库,如requests、BeautifulSoup等,可以爬取网页、论坛、社交媒体等平台上的文本数据。 2. 数据预处理&#xff1a…...

MySQL 常见错误及解决方案

1. Too many connections 运行环境:Winows11、Phpstudy V8.1.1.3、MySQL 5.7.26 同一时间 MySQL 的连接数量有限制,当超过上限时将提示下面错误信息: 1040 - Too many connections 查看当前最大连接数 mysql> show variables like %max_…...

STM32 - 内存分区与OTA

最近搞MCU,发现它与SOC之间存在诸多差异,不能沿用SOC上一些技术理论。本文以STM L4为例,总结了一些STM32 小白入门指南。 标题MCU没有DDR? 是的。MCU并没有DDR,而是让代码存储在nor flash上,临时变量和栈…...

RAG理论:ES混合搜索BM25+kNN(cosine)以及归一化

接前一篇:RAG实践:ES混合搜索BM25+kNN(cosine) https://blog.csdn.net/Xin_101/article/details/140230948 本文主要讲解混合搜索相关理论以及计算推导过程, 包括BM25、kNN以及ES中使用混合搜索分数计算过程。 详细讲解: (1)ES中如何通过BM25计算关键词搜索分数; (2)…...

分享大厂对于缓存操作的封装

hello,伙伴们好久不见,我是shigen。发现有两周没有更新我的文章了。也是因为最近比较忙,基本是993了。 缓存大家再熟悉不过了,几乎是现在任何系统的标配,并引申出来很多的问题:缓存穿透、缓存击穿、缓存雪崩…...

冯诺依曼体系结构与操作系统(Linux)

文章目录 前言冯诺依曼体系结构(硬件)操作系统(软件)总结 前言 冯诺依曼体系结构(硬件) 上图就是冯诺依曼体系结构图,主要包括输入设备,输出设备,存储器,运算…...

开源六轴协作机械臂myCobot280实现交互式乘法!让学习充满乐趣

本文经作者Fumitaka Kimizuka 授权我们翻译和转载。 原文链接:myCobotに「頷き」「首振り」「首傾げ」をしてもらう 🤖 - みかづきブログ・カスタム 引言 Fumitaka Kimizuka 创造了一个乘法表系统,帮助他的女儿享受学习乘法表的乐趣。她可以…...

[C++][CMake][嵌套的CMake]详细讲解

目录 0.前言 & 准备1.节点关系2.添加子目录3.解决问题1.根目录2.calc目录3.sort目录4.calc_test目录5.sort_test 4.注意 0.前言 & 准备 如果项目很大,或者项目中有很多的源码目录,在通过CMake管理项目的时候如果只使用一个CMakeLists.txt&#…...

尚品汇-(十三)

&#xff08;1&#xff09;查询sku列表 在ManageService 中添加 /*** SKU分页列表* param pageParam* return*/ IPage<SkuInfo> getPage(Page<SkuInfo> pageParam);接口实现类 Override public IPage<SkuInfo> getPage(Page<SkuInfo> pageParam) {Qu…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...