Pandas 进阶 —— 数据转换、聚合与可视化
引言
在数据分析的旅程中,Pandas 库提供了从数据转换到聚合再到可视化的全面解决方案。上篇我们掌握了数据的导入和清洗,本篇我们将探索如何通过 Pandas 对数据进行更高级的处理,包括数据转换、聚合分析以及可视化展示。
数据转换
数据转换是数据分析中的重要环节,它涉及到数据结构的调整和变换,以适应不同的分析需求。
- 数据重塑:通过
melt(),pivot(),pivot_table()函数,我们可以将数据从宽格式转换为长格式,或者重新排列数据的行列,以便于分析。 - 数据类型转换:使用
astype()函数可以转换数据的类型,例如将字符串转换为数值类型,以便进行数值计算。 - 数据排序:
sort_values()函数可以用来根据某个或某些列的值进行排序,这对于数据的直观理解和后续分析至关重要。
代码示例:
# 将宽格式数据转换为长格式
df_long = df.melt(id_vars=['Name', 'Age'], value_vars=['Gender', 'Salary'], var_name='Attribute', value_name='Value')
print(df_long)# 转换数据类型
df['Age'] = df['Age'].astype(int)# 根据薪资进行排序
df_sorted = df.sort_values(by='Salary', ascending=False)
数据聚合
数据聚合是通过某种方式将数据汇总起来,以得出有意义的统计信息。
- 分组和聚合:
groupby()函数结合agg()可以对数据进行分组,并应用多种聚合函数,如求和、平均、最大值等。 - 窗口函数:
rolling()和expanding()函数用于执行移动窗口计算,这在时间序列分析中尤其有用。
代码示例:
# 按性别分组并计算平均薪资
gender_salary_avg = df.groupby('Gender')['Salary'].mean()
print(gender_salary_avg)# 使用窗口函数计算薪资的移动平均值
salary_rolling_mean = df['Salary'].rolling(window=3).mean()
时间序列分析
时间序列分析是数据分析中的一个重要领域,特别是在处理具有时间戳的数据时。
- 解析日期时间:
to_datetime()函数用于将字符串转换为日期时间格式,这是进行时间序列分析的第一步。 - 时间索引:使用
set_index()可以将日期时间设置为 DataFrame 的索引,从而方便进行时间序列的切片和重采样。 - 重采样:
resample()函数用于更改时间序列的频率,进行上采样或下采样。
代码示例:
# 解析日期时间并设置为索引
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)# 按月重采样并计算平均薪资
monthly_avg_salary = df.resample('M').mean()['Salary']
数据可视化
数据可视化是数据分析的直观展示,Pandas 与 Matplotlib 等绘图库的结合使用,可以创建各种图表。
- 基本绘图:使用
plot()函数可以快速绘制折线图、柱状图、饼图等。 - 高级图表:包括直方图、箱线图、散点图等,这些图表可以帮助我们发现数据的分布、异常值和相关性。
代码示例:
import matplotlib.pyplot as plt# 绘制薪资的直方图
df['Salary'].plot(kind='hist')
plt.title('Salary Distribution')
plt.xlabel('Salary')
plt.ylabel('Frequency')
plt.show()# 绘制薪资和年龄的散点图
df.plot(kind='scatter', x='Age', y='Salary')
plt.title('Salary vs Age')
plt.xlabel('Age')
plt.ylabel('Salary')
plt.show()
结语
通过本文的学习,我们不仅掌握了 Pandas 的数据转换、聚合和可视化技巧,而且通过具体的代码示例,能够将这些理论知识应用到实际的数据分析工作中。数据的探索和分析是一个不断深入的过程,Pandas 提供了强大的工具来帮助我们从不同角度理解和解释数据。希望你能将这些技能运用到自己的项目中,不断探索和发现数据的潜在价值。
相关文章:
Pandas 进阶 —— 数据转换、聚合与可视化
引言 在数据分析的旅程中,Pandas 库提供了从数据转换到聚合再到可视化的全面解决方案。上篇我们掌握了数据的导入和清洗,本篇我们将探索如何通过 Pandas 对数据进行更高级的处理,包括数据转换、聚合分析以及可视化展示。 数据转换 数据转换…...
华为OD机试 - 来自异国的客人(Java 2024 D卷 100分)
华为OD机试 2024D卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(D卷C卷A卷B卷)》。 刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的代码注释、样例测…...
期末上分站——计组(3)
复习题21-42 21、指令周期是指__C_。 A. CPU从主存取出一条指令的时间 B. CPU执行一条指令的时间 C. CPU从主存取出一条指令的时间加上执行这条指令的时间。 D. 时钟周期时间 22、微型机系统中外设通过适配器与主板的系统总线相连接,其功能是__D_。 A. 数据缓冲和…...
IDA*——AcWing 180. 排书
IDA* 定义 IDA*(Iterative Deepening A*)是一种结合了深度优先搜索(DFS)的递归深度限制特性和A搜索的启发式估价函数的搜索算法。它主要用于解决启发式搜索问题,尤其是当搜索空间很大或者搜索成本不确定时。 IDA* 是…...
【云计算】公有云、私有云、混合云、社区云、多云
公有云、私有云、混合云、社区云、多云 1.云计算的形态1.1 公有云1.2 私有云1.3 混合云1.4 社区云1.5 多云1.5.1 多云和混合云之间的关系1.5.2 多云的用途1.5.3 影子 IT 和多云1.5.4 优缺点 2.不同云形态的对比 1.云计算的形态 张三⾃⼰在家做饭吃,这是 私有云&…...
MySQL中的MVCC解析
MySQL中的MVCC解析 多版本并发控制是MySQL中实现高并发的一种关键技术。通过对数据进行多版本的管理,MVCC能够在保证数据一致性的同时,提高数据库的并发性能。本文将深入探讨MySQL中的MVCC机制,包括其原理、实现方式以及优势。 MVCC的原理 …...
【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA的生日聚会(100分) - 三语言AC题解(Python/Java/Cpp)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 …...
初识STM32:芯片基本信息
STM32简介 STM32是ST公司基于ARM公司的Cortex-M内核开发的32位微控制器。 ARM公司是全球领先的半导体知识产权(IP)提供商,全世界超过95%的智能手机和平板电脑都采用ARM架构。 ST公司于1987年由意大利的SGS微电子与法国的Thomson半导体合并…...
Zabbix 配置PING监控
Zabbix PING监控介绍 如果需要判断机房的网络或者主机是否正常,这就需要使用zabbix ping,Zabbix使用外部命令fping处理ICMP ping的请求,在基于ubuntu APT方式安装zabbix后默认已存在fping程序。另外zabinx_server配置文件参数FpingLocation默…...
异常解决(三)-- Wandb fails with ServiceStartProcessError
原文链接:https://github.com/wandb/wandb/issues/5765 我的环境配置: Python3.8.16 Wandb0.17.4 在使用Wandb记录实验数据时, 报以下错误: ServiceStartProcessError: The wandb service process exited with 1. Ensure that s…...
Qt调用Matlab(一)
目录 1 概述2 创建Qt工程2.1 增加Matlab支持3 调用Matlab3.1 widget.h3.2 widget.cpp4 运行4.1 配置4.2 运行1 概述 MATLAB是MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域…...
网络爬虫(二) 哔哩哔哩热榜高频词按照图片形状排列
我们有时候需要爬取结果生成为自定义的词云图 生成自定义的词云图通常需要以下步骤: 1. 爬取数据:使用爬虫工具或库,如requests、BeautifulSoup等,可以爬取网页、论坛、社交媒体等平台上的文本数据。 2. 数据预处理:…...
MySQL 常见错误及解决方案
1. Too many connections 运行环境:Winows11、Phpstudy V8.1.1.3、MySQL 5.7.26 同一时间 MySQL 的连接数量有限制,当超过上限时将提示下面错误信息: 1040 - Too many connections 查看当前最大连接数 mysql> show variables like %max_…...
STM32 - 内存分区与OTA
最近搞MCU,发现它与SOC之间存在诸多差异,不能沿用SOC上一些技术理论。本文以STM L4为例,总结了一些STM32 小白入门指南。 标题MCU没有DDR? 是的。MCU并没有DDR,而是让代码存储在nor flash上,临时变量和栈…...
RAG理论:ES混合搜索BM25+kNN(cosine)以及归一化
接前一篇:RAG实践:ES混合搜索BM25+kNN(cosine) https://blog.csdn.net/Xin_101/article/details/140230948 本文主要讲解混合搜索相关理论以及计算推导过程, 包括BM25、kNN以及ES中使用混合搜索分数计算过程。 详细讲解: (1)ES中如何通过BM25计算关键词搜索分数; (2)…...
分享大厂对于缓存操作的封装
hello,伙伴们好久不见,我是shigen。发现有两周没有更新我的文章了。也是因为最近比较忙,基本是993了。 缓存大家再熟悉不过了,几乎是现在任何系统的标配,并引申出来很多的问题:缓存穿透、缓存击穿、缓存雪崩…...
冯诺依曼体系结构与操作系统(Linux)
文章目录 前言冯诺依曼体系结构(硬件)操作系统(软件)总结 前言 冯诺依曼体系结构(硬件) 上图就是冯诺依曼体系结构图,主要包括输入设备,输出设备,存储器,运算…...
开源六轴协作机械臂myCobot280实现交互式乘法!让学习充满乐趣
本文经作者Fumitaka Kimizuka 授权我们翻译和转载。 原文链接:myCobotに「頷き」「首振り」「首傾げ」をしてもらう 🤖 - みかづきブログ・カスタム 引言 Fumitaka Kimizuka 创造了一个乘法表系统,帮助他的女儿享受学习乘法表的乐趣。她可以…...
[C++][CMake][嵌套的CMake]详细讲解
目录 0.前言 & 准备1.节点关系2.添加子目录3.解决问题1.根目录2.calc目录3.sort目录4.calc_test目录5.sort_test 4.注意 0.前言 & 准备 如果项目很大,或者项目中有很多的源码目录,在通过CMake管理项目的时候如果只使用一个CMakeLists.txt&#…...
尚品汇-(十三)
(1)查询sku列表 在ManageService 中添加 /*** SKU分页列表* param pageParam* return*/ IPage<SkuInfo> getPage(Page<SkuInfo> pageParam);接口实现类 Override public IPage<SkuInfo> getPage(Page<SkuInfo> pageParam) {Qu…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
Axure 下拉框联动
实现选省、选完省之后选对应省份下的市区...
客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...
