当前位置: 首页 > news >正文

从一次 SQL 查询的全过程了解 DolphinDB 线程模型

1. 前言

DolphinDB 的线程模型较为复杂,写入与查询分布式表都可能需要多个类型的线程。通过了解 SQL 查询的全过程,可以帮助我们了解 DolphinDB 的线程模型,掌握 DolpinDB 的配置,以及优化系统性能的方法。

本教程以一个分布式 SQL 查询为例,介绍 DolphinDB 分布式数据库查询过程的数据流,以及其经历的各类线程池。

2. DolphinDB 的主要节点类型

  • agent(代理节点)

负责执行控制节点发出的启动和关闭数据节点或计算节点的命令。在一个集群中,每台物理服务器有且仅有一个代理节点。

  • controller(控制节点)

负责收集代理节点、数据节点和计算节点的心跳,监控每个节点的工作状态,管理分布式文件系统的元数据和事务。

  • data node(数据节点)

既可以存储数据,也可以用于数据的查询和计算。

  • compute node(计算节点)

只用于数据的查询和计算。计算节点应用于计算密集型的操作,包括流计算、分布式关联和机器学习等场景。计算节点不存储数据,但可以通过 loadTable 加载数据进行计算。通过在集群中配置计算节点,可以将写入任务提交到数据节点、所有计算任务提交到计算节点,实现存储和计算的分离。

1.30.14/2.00.1 版本开始支持计算节点。

3. DolphinDB 线程类型

3.1 worker 线程

  • 常规交互作业的工作线程。
  • 每个节点都存在 worker 线程,可以分为以下几类:
    • ZeroWorker
    • FirstWorker
    • SecondWorker
    • ThirdWorker
    • ForthWorker
    • FifthWorker
    • SixthWorker
  • 客户端提交至节点的作业为 0 级,由 ZeroWorker 处理。
  • 根据作业所涉及到的分区,ZeroWorker 将其分解为多个子任务。
  • 其中本地节点上的子任务由 ZeroWorker 与 FirstWorker 并行执行。
  • 需要由远程节点执行的子任务则降低为 1 级,并通过 remoteExecutor 发送到对应节点上的 FirstWorker 处理。
  • 以此类推,若某个级别的子任务需要进一步拆解,则拆分出来的由远程节点执行的子任务降低一级,发送至远程节点上对应层级的 worker 处理。
  • ZeroWorker, FirstWorker, SecondWorker 的线程数量由配置参数 workerNum 决定,分别为 workerNumworkerNum-1, workerNum*0.75。
  • 其余层级的 work 线程数量为上级的 1/2 ,向上取整,最小个数为 1。
  • 配置参数 workerNum 默认值为机器上的 CPU 核数,最大值不超过 license 中的最大核数。

3.2 remote executor 线程

  • 将远程任务发送到远程节点的线程。
  • 在非 single 模式的节点上可以通过配置参数 remoteExecutors 配置线程个数。
  • 默认值为集群中节点个数和本地 worker 的较小值。

3.3 asynchronous remote executor 线程

  • 接收对其他节点发起的远程调用(Remote Procedure Call, RPC)任务的线程。
  • 将收到的远程调用任务放到 remote executor 的任务队列中。
  • 每个非 single 模式的节点上有且仅有 1 个该线程。

3.4 remote task dispatcher 线程

  • 在远程调用出错需要重试时,或者一个被关闭的连接上仍有未完成的任务时,这些任务会先放到一个队列里,由 remote task dispatcher 线程从这个队列取任务并重新交由 asynchronous remote executor 线程去发起远程调用。

3.5 batch job worker 线程

  • 执行批处理作业任务的工作线程,批处理作业是指通过函数 submitJob 、submitJobEx 、submitJobEx2提交的作业。
  • 其上限通过配置参数 maxBatchJobWorker 设置。
  • 如果 maxBatchJobWorker 未设置,其默认值是配置参数 workerNum 的值。
  • 该线程在任务执行完后若闲置 60 秒会被系统自动回收,不再占用系统资源。

3.6 web worker 线程

  • 处理 HTTP 请求的工作线程。
  • 由配置参数 webWorkerNum 配置,默认为 1,最大值为 CPU 内核数。

3.7 dynamic worker manager 线程和 dynamic worker 线程

  • dynamic worker 是动态工作线程,是 worker 线程的补充。
  • dynamic worker manager 是创建 dynamic worker 的线程,每个节点有且仅有 1 个该线程。
  • 当所有的 worker 线程被占满时,再有新任务到来时,通过 dynamic worker manager 线程创建 dynamic worker 线程来执行新任务。
  • 根据系统并发任务的繁忙程度,总共可以创建三组动态工作线程,每一个级别可以创建 maxDynamicWorker 个动态工作线程。
  • maxDynamicWorker 的默认值为配置参数 workerNum 的值。
  • 动态工作线程在任务执行完后若闲置 60 秒则会被系统自动回收,不再占用系统资源。

3.8 infra worker 线程

  • 基础设施处理线程。
  • 开启高可用后,用于接收 raft 心跳汇报的线程,防止集群负载大时,心跳信息无法及时汇报。
  • 默认自动创建 2 个该线程,。

3.9 urgent worker 线程

  • 处理紧急任务。
  • 只接收一些特殊的系统级任务,譬如登录、取消作业等。
  • 由配置参数 urgentWorkerNum 配置,默认值为 1,最大值为 CPU 内核数。

3.10 block IO worker 线程

  • 执行对硬盘读写任务的线程。
  • 由配置参数 diskIOConcurrencyLevel 配置,默认值为 1。

4. 一次 SQL 查询的线程经历

SQL 查询可提交到集群中任一计算节点或数据节点。获得请求的节点作为该查询的协调节点。

下面以 API 向协调节点发起一次 SQL 查询为例,讲述整个过程中所调度的所有线程。

step1:DolphinDB 客户端向协调节点(数据节点或计算节点)发起数据查询请求

以协调节点为数据节点为例,发起一次聚合查询,查询语句如下:

select avg(price)
from loadTable("dfs://database", "table")
where date between 2021.01.01 : 2021.12.31
group by date

假设上述聚合查询语句总共涉及 300 个分区的数据,且正好平均分配在三个数据节点(即每个数据节点包含了 100 个查询的分区数据)。

DolphinDB 客户端将查询请求进行二进制序列化后通过 TCP 协议传输给 datanode1。

step2:datanode1 收到查询请求

datanode1 收到客户端的查询请求后,将分配 1 个 ZeroWorker 线程对内容进行反序列化和解析。当发现内容是 SQL 查询时,会向 controller 发起请求,获取跟这个查询相关的所有分区的信息。整个 SQL 查询执行完毕前,这个 ZeroWorker 线程会被一直占用。

step3:controller 收到 datanode1 的请求

controller 收到 datanode1 的请求后,将分配 1 个 FirstWorker 线程对内容进行反序列化和解析,准备好本次 SQL 查询涉及的数据分区信息后,由该 FirstWorker 线程序列化后通过 TCP 协议传输给 datanode1。controller 的该 FirstWorker 线程完成该工作后将从请求队列中获取下一个请求。

step4:datanode1 收到 controller 返回的信息

datanode1 的 ZeroWorker 收到 controller 返回的信息后,由本节点下的 1 个 FirstWorker 线程对内容进行反序列化和解析。

得知本次 SQL 查询涉及的数据分区信息后,将位于本节点的分区数据计算任务添加到本地任务队列,此时本地任务队列会产生 100 个子任务。

同时,把需要使用远程节点 datanode2 与 datanode3 的分区数据的计算任务,以任务包的方式发送到远程任务队列。远程任务队列会被添加 2 个远程任务,分别打上 datanode2 和 datanode3 的标志。

step5 (1):本地 worker 消费本地任务队列

此时,datanode1 中的 ZeroWorker 线程和 FirstWorker 线程会同时并行消费本地任务队列的子任务。

step5 (2)、(3):本地 remote executor 发送远程任务至远程节点

同时,remote executor 线程将远程任务队列的内容序列化后,通过 TCP 协议分别发送到 datanode2 和 datanode3。

step6 (1)、(2):远程节点收到远程任务

datanode2 和 datanode3 收到远程任务后,将分配 1 个 FirstWorker 线程对内容进行反序列化和解析,并将计算任务发送到本地任务队列,此时 datanode2 和 datanode3 的本地任务队列各会产生 100 个子任务。

step7 (1)、(2):远程节点 FirstWorker 消费本地任务队列

此时,datanode2 和 datanode3 上的 FirstWorker 线程会并行消费本地任务队列的子任务。

step8 (1)、(2):远程节点返回中间计算结果至 datanode1

当 datanode2 和 datanode3 涉及的计算任务完成后,分别得到了本次 SQL 查询的中间计算结果,由一直占用的 FirstWorker 线程对内容进行序列化后,通过 TCP 协议传输给 datanode1。

step9:datanode1 计算最终结果并返回给客户端

datanode1 接收到 datanode2 和 datanode3 返回的中间计算结果后,由一直占用的 ZeroWorker 线程对内容进行反序列化,然后在该线程上计算出最终结果,并在序列化后通过 TCP 协议传输给客户端。

DolphinDB 客户端接收到 datanode1 返回的信息后,经过反序列化显示本次 SQL 查询的结果。

协调节点为数据节点和计算节点的区别:

  1. 数据节点可以存储数据,计算节点不能存储数据。但计算节点解析客户端的 SQL 查询后,从 controller 拿到本次 SQL 查询涉及的数据分区信息,会将所有数据查询任务都分配到数据节点执行,得到每个数据节点返回的中间结果,最后调度计算节点的 ZeroWorker 线程计算最终结果并返回给客户端。
  2. 当实时写入的数据量非常大时,建议配置计算节点,将所有 SQL 查询都提交到计算节点,实现存储和计算的分离,减轻数据节点的计算工作负担。

5. 优化建议

通过分析上述的线程经历,可以发现,本次 SQL 查询一共发生了 8 次 TCP 传输,其中 2 次是 DolphinDB server 和 DolphinDB client 之间的传输。如果查询结果的数据量比较大,同时又对查询结果的延时性比较敏感,可以选择如下 6 个优化方向:

  • 集群节点之间,以及节点和客户端之间的通信推荐使用万兆以太网。
  • 优化线程配置参数。(详见本文后续章节)
  • 增加每个节点的物理磁盘的数量。更多的磁盘可以更快速地并行读取多个分区的数据。
  • SQL 语句优化:where 条件添加分区字段的信息过滤,起到分区剪枝的目的,避免全表扫描。
  • 在查询数据量较大时,可对 API 查询结果进行数据压缩,提高传输效率。开启压缩后从 server 下载的数据即为压缩后的数据。Java 代码示例如下。
//API 建立 connection 的时候将第三个参数 compress 设置为 true 即可开启压缩                     
DBConnection connection = new DBConnection(false, false, true);        
connection.connect(HOST, PORT, "admin", "123456");        
BasicTable basicTable = (BasicTable) connection.run("select * from loadTable(\"dfs://database\", \"table\")");
  • 增加 license 限制的 CPU 核心数和内存大小,提升系统的并发处理能力。

6. 不同类型线程与配置参数的关系

线程类型参数配置默认配置配置优化建议
workerworkerNumCPU的内核数license 限制的 CPU 核心数与物理机 CPU 核心数两者的最小值
remote executorremoteExecutors1集群的节点数-1
batch job workermaxBatchJobWorkerworkerNumlicense 限制的 CPU 核心数与物理机 CPU 核心数两者的最小值
web workerwebWorkerNum1推荐 webWorkerNum 配置为 4大多情况下很少通过 web 与 DolphinDB 节点交互的方式提交查询任务
dynamic workermaxDynamicWorkerworkerNum采用默认值
infra workerinfraWorkerNum2采用默认值
urgent workerurgentWorkerNum1采用默认值
block IO workerdiskIOConcurrencyLevel1对于 hdd 磁盘,推荐 diskIOConcurrencyLevel 设为对应节点下通过 volumes 参数配置的磁盘个数对于 ssd 磁盘,推荐 diskIOConcurrencyLevel = 0

备注:

  • 如果是单节点 single 模式或者是单数据节点集群,不需要配置 remoteExecutors 的值。

7. 总结

通过本文介绍,可以看出,DolphinDB的线程模型主要由 worker、remote executor、batch job worker、web worker、dynamic worker、infra worker、urgent worker、block IO worker 组成。在一次 SQL 查询会发生多次 TCP 传输,用户可以根据服务器的具体情况进行合理配置线程参数,从而降低查询延时。

相关文章:

从一次 SQL 查询的全过程了解 DolphinDB 线程模型

1. 前言 DolphinDB 的线程模型较为复杂,写入与查询分布式表都可能需要多个类型的线程。通过了解 SQL 查询的全过程,可以帮助我们了解 DolphinDB 的线程模型,掌握 DolpinDB 的配置,以及优化系统性能的方法。 本教程以一个分布式 …...

Vue3.js“非原始值”响应式实现基本原理笔记(二)

如果您觉得这篇文章有帮助的话!给个点赞和评论支持下吧,感谢~ 作者:前端小王hs 阿里云社区博客专家/清华大学出版社签约作者/csdn百万访问前端博主/B站千粉前端up主 此篇文章是博主于2022年学习《Vue.js设计与实现》时的笔记整理而来 书籍&a…...

论文 | PRCA: 通过可插拔奖励驱动的上下文适配器拟合用于检索问答的黑盒大语言模型

论文全称:PRCA: Fitting Black-Box Large Language Models for Retrieval Question Answering via Pluggable Reward-Driven Contextual Adapter 核心问题:如何在检索增强式问答(ReQA)任务中,利用大型语言模型&#xf…...

网络状态的智能感知:WebKit 支持 Network Information API 深度解析

网络状态的智能感知:WebKit 支持 Network Information API 深度解析 在现代 Web 应用中,理解用户的网络连接状态对于提供适应性体验至关重要。Network Information API,一个新兴的 Web API,允许 Web 应用访问设备的网络信息&…...

Vue3基础知识:组合式API中的provide和inject,他们作用是什么?如何使用?以及案例演示

1.provide和inject相较于父子传递的不同在于provide,inject可以用于跨层级通信(通俗易懂的讲就是可以实现爷孙之间的直接信息传递)。 1.跨层级传递数据 1.在顶层组件通过provide函数提供数据 2.底层组件通过inject函数获取数据 演示一:跨…...

Transformer自注意力机制(Self-Attention)模型

​ 上一篇我们介绍了transform专题一:Seq2seq model,也知道了transfrom属于seq2seq模型,这一排篇咱们接着介绍另外几种seq2seq架构的模型。)RNN(循环神经网络)CNN(卷积神经网络)&…...

【计算机体系结构】缓存的false sharing

在介绍缓存的false sharing之前,本文先介绍一下多核系统中缓存一致性是如何维护的。 目前主流的多核系统中的缓存一致性协议是MESI协议及其衍生协议。 MESI协议 MESI协议的4种状态 MESI协议有4种状态。MESI是4种状态的首字母缩写,缓存行的4种状态分别…...

Ubuntu24.04 Isaacgym的安装

官方论坛 rl-接口 教程1 教程2 教程3 1.下载压缩包 link 2. 解压 tar -xvf IsaacGym_Preview_4_Package.tar.gz核心教程在 isaacgym/docs/install.html下 3. 从源码安装 Ubuntu24.04还需首先进入虚拟环境 python -m venv myenv # 创建虚拟环境,已有可跳过…...

docker 设置代理,通过代理服务器拉取镜像

docker 拉取目标镜像需要通过代理服务器进行时,可以通过为 docker 配置全局代理来实现。 注:Linux 上通过临时命令 export HTTP_PROXY 设置的代理,对 curl 这些有用,但是对 docker pull 不起作用。 示例 假设您的代理服务器地址是…...

OpenCV教程02:图像处理系统1.0(翻转+形态学+滤波+缩放+旋转)

-------------OpenCV教程集合------------- Python教程99:一起来初识OpenCV(一个跨平台的计算机视觉库) OpenCV教程01:图像的操作(读取显示保存属性获取和修改像素值) OpenCV教程02:图像处理…...

人工智能在招投标领域的运用---监控视频连续性检测

作者:舒城县公共交易中心 zhu_min726126.com 原创,转载请注明出处。 摘要 随着人工智能(AI)技术的飞速发展,其在各个领域的应用日益广泛。本文旨在探讨人工智能在招投标领域的运营,重点介绍AI对视频完整…...

加装德国进口高精度主轴 智能手机壳「高质量高效率」钻孔铣槽

在当前高度智能化的社会背景下,智能手机早已成为人们生活、工作的必备品,智能手机壳作市场需求量巨大。智能手机壳的加工过程涉及多个环节,包括钻孔和铣槽等。钻孔要求精度高、孔位准确,而铣槽则需要保证槽位规整、深度适宜。这些…...

Java Stream API 常用操作技巧

Java 8 引入的 Stream API 为集合操作提供了一种声明式编程模型,极大地简化了数据处理的复杂性。本文将介绍 Java Stream API 的几种常用操作方式,帮助开发者更高效地处理集合数据。 1. 过滤(Filtering) 过滤是选择集合中满足特…...

SwiftData 模型对象的多个实例在 SwiftUI 中不能及时同步的解决

概览 我们已经知道,用 CoreData 在背后默默支持的 SwiftUI 视图在使用 @FetchRequest 来查询托管对象集合时,若查询结果中的托管对象在别处被改变将不会在 FetchedResults 中得到及时的刷新。 那么这一“囧境”在 SwiftData 里是否也会“卷土重来”呢?空说无益,就让我们在…...

Android 系统网络、时间服务器配置修改

1.修改wifi 是否可用的检测地址: 由于编译的源码用的是谷歌的检测url,国内访问不了,系统会认为wifi网络受限,所以改成国内的地址 adb shell settings delete global captive_portal_https_urladb shell settings delete global captive_por…...

类和对象深入理解

目录 static成员概念静态成员变量面试题补充代码1代码2代码3如何访问private中的成员变量 静态成员函数静态成员函数没有this指针 特性 友元友元函数友元类 内部类特性1特性2 匿名对象拷贝对象时的一些编译器优化 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接…...

在postgres数据库中的几个简单用法

1、例如表中coord_str的字段数据是121.12334 31.3435这样的字符串,如何将对应的数据转换成geometry数据,实现如下 UPDATE coordinates SET geom ST_GeomFromText(POINT( || split_part(coord_str, , 1) || || split_part(coord_str, , 2) || ), 43…...

SQLServer Manager Studio扩展开发从入门到弃坑

Visualstudio的已经开发好了,可这个就是不行,直接运行点这些按钮加载失败,而我直接不调试模式,则直接什么都没有,调试 发现是根本没触发逻辑的。 文档资料太少, 我换了几个ssms.exe都不行,18-20…...

ComfyUI预处理器ControlNet简单介绍与使用(附件工作流)

简介 ControlNet 是一个很强的插件,提供了很多种图片的控制方式,有的可以控制画面的结构,有的可以控制人物的姿势,还有的可以控制图片的画风,这对于提高AI绘画的质量特别有用。接下来就演示几种热门常用的控制方式 1…...

【篇三】在vue3上实现阿里云oss文件直传

之前写了两篇关于文件上传的文章 【篇一】使用springbootvue实现阿里云oss上传 【篇二】使用springbootvue实现阿里云oss文件直传,解决大文件分片上传问题 今天介绍一下在vue3中实现阿里云oss文件直传,主要是基于篇二中的源码进行修改,看具体…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...