类和对象深入理解
目录
- static成员
- 概念
- 静态成员变量
- 面试题
- 补充
- 代码1
- 代码2
- 代码3
- 如何访问private中的成员变量
- 静态成员函数
- 静态成员函数没有this指针
- 特性
- 友元
- 友元函数
- 友元类
- 内部类
- 特性1
- 特性2
- 匿名对象
- 拷贝对象时的一些编译器优化
感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接
🐒🐒🐒 个人主页
🥸🥸🥸 C语言
🐿️🐿️🐿️ C语言例题
🐣🐣🐣 python
🐓🐓🐓 数据结构C语言
🐔🐔🐔 C++
🐿️🐿️🐿️ 文章链接目录
static成员
概念
声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量
用static修饰的成员函数,称之为静态成员函数。
静态成员变量一定要在类外进行初始化
静态成员变量
面试题
面试题:实现一个类,计算程序中创建出了多少个类对象。
class A
{
public:A(){++n;}A(const A& aa){++ n;}
private:static int n;
};
int A::n = 0;
这里的n就是一个静态全局变量,注意静态变量是不能给缺省值的,因为他不是单独属于某一个对象,而是属于这个类的所有对象,因此需要在类外面定义
由于n受域作用限定符的限制,当我们屏蔽掉private后就可以访问n了
我们再来看看下面的三段代码
补充
代码1
class A
{
public:A(){++n;}A(const A& aa){++ n;}
//private:static int n;
};
int A::n = 0;
int main()
{A aa1;A aa2;A* ptr = nullptr;cout << aa1.n << endl;cout << aa2.n << endl;cout << ptr->n << endl;return
代码2
class A
{
public:A(){++n;}A(const A& aa){++ n;}
//private:static int n;
};
int A::n = 0;
int main()
{A aa1;//A aa2;A* ptr = nullptr;cout << aa1.n << endl;//cout << aa2.n << endl;cout << ptr->n << endl;return 0;
}
代码3
class A
{
public:A(){++n;}A(const A& aa){++ n;}
//private:static int n;
};
int A::n = 0;
int main()
{//A aa1;//A aa2;A* ptr = nullptr;//cout << aa1.n << endl;//cout << aa2.n << endl;cout << ptr->n << endl;return 0;
}
上面的三个代码中ptr输出的n的值是不一样的,这需要我们了解static存储的变量在静态区
比如ptr->n,n并不在ptr指向的对象里,而是在静态区,在寻找n的时候就是去静态区里找
因为是受到static修饰,所以n的值是全局变量,全局变量不想局部变量,出了作用域后就会销毁然后从新开始,也就是说这里的n不会因为一个对象结束后就重新变成0
如何访问private中的成员变量
上面的代码中我们都是将private屏蔽掉才可以访问到n的,当private没有屏蔽的时候,就会因为权限导出不允许访问
要想解决这个问题只有在公有区域里创建一个函数Getn()去获得n的值
class A
{
public:A(){++n;}A(const A& aa){++ n;}int Getn(){return n;}
private:static int n;
};
int A::n = 0;
int main()
{A aa1;cout << aa1.Getn() << endl;return 0;
}
静态成员函数
静态成员函数的访问方式如下
A::Getn()也是可以这样访问的,另外静态成员变量也同理
静态成员函数没有this指针
静态成员函数与普通的成员函数不同点在于静态成员函数没有this指针,所以不能访问非静态成员变量或者函数
class A
{
public:A(){++n;}A(const A& aa){++ n;}static int Getn(){a++;return n;}
private:static int n;int a;
};
int A::n = 0;
int main()
{A aa1;cout << A::n << endl;return 0;
}
特性
1. 静态成员为所有类对象所共享,不属于某个具体的对象,存放在静态区
2. 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明
3. 类静态成员即可用 类名::静态成员 或者 对象.静态成员 来访问
4. 静态成员函数没有隐藏的this指针,不能访问任何非静态成员
5. 静态成员也是类的成员,受public、protected、private 访问限定符的限制
友元
友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以
友元不宜多用。所以友元我们了解一下就行了
友元分为:友元函数和友元类
友元函数
问题:
现在尝试去重载operator<<,然后发现没办法将operator<<重载成成员函数
因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置。this指针默认是第一个参数也就是左操作数了。
但是实际使用中cout需要是第一个形参对象,才能正常使用
所以要将operator<<重载成全局函数。但又会导致类外没办法访问成员,此时就需要友元来解决。operator>>同理。
class Date
{
public:Date(int year, int month, int day): _year(year), _month(month), _day(day){}// d1 << cout; -> d1.operator<<(&d1, cout); 不符合常规调用// 因为成员函数第一个参数一定是隐藏的this,所以d1必须放在<<的左侧ostream& operator<<(ostream& _cout){_cout << _year << "-" << _month << "-" << _day << endl;return _cout;}
private:int _year;int _month;int _day;
};
友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但需要在
类的内部声明,声明时需要加friend关键字。
class Date
{friend ostream& operator<<(ostream& _cout, const Date& d);friend istream& operator>>(istream& _cin, Date& d);
public:Date(int year = 1900, int month = 1, int day = 1): _year(year), _month(month), _day(day){}
private:int _year;int _month;int _day;
};
ostream& operator<<(ostream& _cout, const Date& d)
{_cout << d._year << "-" << d._month << "-" << d._day;return _cout;
}
istream& operator>>(istream& _cin, Date& d)
{_cin >> d._year;_cin >> d._month;_cin >> d._day;return _cin;
}
int main()
{Date d;cin >> d;cout << d << endl;return 0;
}
说明:
友元函数可访问类的私有和保护成员,但不是类的成员函数
友元函数不能用const修饰(没有this指针)
友元函数可以在类定义的任何地方声明,不受类访问限定符限制
一个函数可以是多个类的友元函数
友元函数的调用与普通函数的调用原理相同
友元类
友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。
友元关系是单向的,不具有交换性。
比如上述Time类和Date类,在Time类中声明Date类为其友元类,那么可以在Date类中直接
访问Time类的私有成员变量,但想在Time类中访问Date类中私有的成员变量则不行。
友元关系不能传递
如果C是B的友元, B是A的友元,则不能说明C时A的友元。友元关系不能继承
class Time
{friend class Date; // 声明日期类为时间类的友元类,则在日期类中就直接访问Time类
中的私有成员变量
public:Time(int hour = 0, int minute = 0, int second = 0): _hour(hour), _minute(minute), _second(second){}private:int _hour;int _minute;int _second;
};
class Date
{
public:Date(int year = 1900, int month = 1, int day = 1): _year(year), _month(month), _day(day){}void SetTimeOfDate(int hour, int minute, int second){// 直接访问时间类私有的成员变量_t._hour = hour;_t._minute = minute;_t._second = second;}private:int _year;int _month;int _day;Time _t;
};
内部类
概念:如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,
它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越
的访问权限。
注意:内部类就是外部类的友元类,内部类可以通过外部类的对象参数来访问外部类中的所有成员
但是外部类不是内部类的友元。
特性:
1. sizeof(外部类)=外部类,和内部类没有任何关系。
2. 内部类可以定义在外部类的public、protected、private都是可以的,且内部类受类域限制
3. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名(内部类是外部类的友元类)
特性1
class A
{
private:static int k;int h;
public:class B // B天生就是A的友元{public:void foo(const A& a){cout << k << endl;cout << a.h << endl;}};
};
int A::k = 1;
int main()
{A::B b;b.foo(A());cout << sizeof(A) << endl;return 0;
}
sizeof(A)的结果是4,可能很多人会觉得B在A里面的,所以sizeof(A)的结果是包含了B的空间的,但是事实上不是这样的,如果要让sizeof(A)的结果是算上B的空间大小的话应该像下面这段代码这样写
class B
{
private:int _b1;
};
class A
{
private:static int k;int h;B _b;
}
此外类是不占用空间的,因为类只是一个声明,而在定义的时候才会有空间,也就是说声明只是说有这么一个东西,但是不会讲空间分配给他,而定义则是让这个东西真实的存在,并分配空间给他
特性2
内部类也是受访问限定符和类域的限制
class A
{
public:class B{};
};
int main()
{A a;B b;return 0;
}
当我们用域作用限定符的时候就可以正常运行
class A
{
public:class B{};
};
int main()
{A a;A::B b;return 0;
}
但是当class B 在A的private中就会因为B是私有导致无法访问
class A
{
private:class B{};
};
int main()
{A a;A::B b;return 0;
}
匿名对象
匿名对象就是没有名字的对象,他的特点是生命周期只在当前一行
class A
{
public:A(int a = 0):_a(a){cout << "A(int a)" <<a<< endl;}~A(){cout << "~A()" << endl;}
private:int _a;
};
int main()
{A aa1;A aa2(2);A();A(3);return 0;
}
拷贝对象时的一些编译器优化
在传参和传返回值的过程中,一般编译器会做一些优化,减少对象的拷贝,这个在一些场景下还
是非常有用的。
但是不同的编译器优化程度是不同的,所以我们只需要简单了解一下就可以了
class A
{
public:A(int a = 0):_a(a){cout << "A(int a)" << endl;}A(const A& aa):_a(aa._a){cout << "A(const A& aa)" << endl;}A& operator=(const A& aa){cout << "A& operator=(const A& aa)" << endl;if (this != &aa){_a = aa._a;}return *this;}~A(){cout << "~A()" << endl;}
private:int _a;
};
void f1(A aa)
{}
A f2()
{A aa;return aa;
}
int main()
{// 传值传参A aa1;f1(aa1);cout << endl;// 传值返回f2();cout << endl;// 隐式类型,连续构造+拷贝构造->优化为直接构造f1(1);// 一个表达式中,连续构造+拷贝构造->优化为一个构造f1(A(2));cout << endl;// 一个表达式中,连续拷贝构造+拷贝构造->优化一个拷贝构造A aa2 = f2();cout << endl;// 一个表达式中,连续拷贝构造+赋值重载->无法优化aa1 = f2();cout << endl;return 0;
}
相关文章:

类和对象深入理解
目录 static成员概念静态成员变量面试题补充代码1代码2代码3如何访问private中的成员变量 静态成员函数静态成员函数没有this指针 特性 友元友元函数友元类 内部类特性1特性2 匿名对象拷贝对象时的一些编译器优化 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接…...
在postgres数据库中的几个简单用法
1、例如表中coord_str的字段数据是121.12334 31.3435这样的字符串,如何将对应的数据转换成geometry数据,实现如下 UPDATE coordinates SET geom ST_GeomFromText(POINT( || split_part(coord_str, , 1) || || split_part(coord_str, , 2) || ), 43…...

SQLServer Manager Studio扩展开发从入门到弃坑
Visualstudio的已经开发好了,可这个就是不行,直接运行点这些按钮加载失败,而我直接不调试模式,则直接什么都没有,调试 发现是根本没触发逻辑的。 文档资料太少, 我换了几个ssms.exe都不行,18-20…...

ComfyUI预处理器ControlNet简单介绍与使用(附件工作流)
简介 ControlNet 是一个很强的插件,提供了很多种图片的控制方式,有的可以控制画面的结构,有的可以控制人物的姿势,还有的可以控制图片的画风,这对于提高AI绘画的质量特别有用。接下来就演示几种热门常用的控制方式 1…...
【篇三】在vue3上实现阿里云oss文件直传
之前写了两篇关于文件上传的文章 【篇一】使用springbootvue实现阿里云oss上传 【篇二】使用springbootvue实现阿里云oss文件直传,解决大文件分片上传问题 今天介绍一下在vue3中实现阿里云oss文件直传,主要是基于篇二中的源码进行修改,看具体…...
OceanBase v4.2 特性解析:对Json与Xml的扩展支持
1. 背景 OceanBase的Oracle模式当前已实现对XMLType类型的支持,不仅包含了基本的构造、查询、更新以及格式转换功能,还支持使用Xpath查询从XML数据中提取特定值。在V 4.2.2 版本中,我们进一步扩展了Oracle模式下对XMLType的支持,…...
《框架封装 · 统一异常处理和返回值包装》
📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...
深入WebKit:揭秘复杂文档的高效渲染之道
深入WebKit:揭秘复杂文档的高效渲染之道 在当今信息爆炸的时代,网页不再仅仅是简单的文本和图片的集合,而是充满了复杂布局和丰富媒体内容的交互式平台。WebKit 作为众多流行浏览器的心脏,其布局引擎承担着将 HTML、CSS 代码转换…...

进程的控制-孤儿进程和僵尸进程
孤儿进程 : 一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被 init 进程( 进程号为 1) 所收养,并由 init 进程对它们完成状态收集工作 为了释放子进程的占用的系统资源: …...

【Unity navigation面板】
【Unity navigation面板】 Unity的Navigation面板是一个集成在Unity编辑器中的界面,它允许开发者对导航网格(NavMesh)进行配置和管理。 Unity Navigation面板的一些关键特性和功能: 导航网格代理(NavMesh Agent&…...
二刷算法训练营Day53 | 动态规划(14/17)
目录 详细布置: 1. 392. 判断子序列 2. 115. 不同的子序列 详细布置: 1. 392. 判断子序列 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余…...
将缓冲文件写到磁盘中的命令sync
将缓冲文件写到磁盘中的命令sync There is no nutrition in the blog content. After reading it, you will not only suffer from malnutrition, but also impotence. The blog content is all parallel goods. Those who are worried about being cheated should leave quick…...

灵活视图变换器:为扩散模型设计的革新图像生成架构
在自然界中,图像的分辨率是无限的,而现有的图像生成模型在跨任意分辨率泛化方面存在困难。虽然扩散变换器(DiT)在特定分辨率范围内表现出色,但在处理不同分辨率的图像时却力不从心。为了克服这一限制,来自上…...
[终端安全]-1 总体介绍
有朋友一直在和笔者研讨智驾安全这个热门话题,笔者十多年工作从不离终端安全这个核心话题(芯片安全、操作系统安全、应用安全),近来也一直在梳理终端安全体系;手机、汽车皆是我们生活中应用最普遍的智能终端࿰…...

Mysql5.7并发插入死锁问题
死锁的产生条件 互斥、请求和保持、不可剥夺、循环等待 MySQL锁类型 死锁复现 环境:Mysql 5.7版本,Innodb引擎,可重复度隔离级别 并发场景下使用duplicate key update插入或更新数据可能会造成死锁,下面就产生死锁的条件进行模…...
网络“ping不通”,如何排查和解决呢?
网络问题往往复杂且难以预测,其中“ping不通”是常见的网络故障之一。 1. 确认问题现象 首先,明确问题是完全无法ping通(无响应)还是ping通但有高延迟或丢包。这有助于缩小问题范围。 2. 本地检查 网络接口状态:使用ifconfig(Linux)或ipc…...
日常学习--20240706
1、udp协议的特点有哪些? a、无连接,发送和接收数据不需要建立连接,开销小,实时性好 b、不可靠传输,不保证数据包能够到达目的地,也不保证数据包的顺序 c、面向数据报的,以数据报形式发送数据…...

入门PHP就来我这(高级)12 ~ 获取数据
有胆量你就来跟着路老师卷起来! -- 纯干货,技术知识分享 路老师给大家分享PHP语言的知识了,旨在想让大家入门PHP,并深入了解PHP语言。 1 从结果集中获取一行作为对象 表中数据行如下: 利用mysqli_fetch_array()函数获…...

AIGC专栏12——EasyAnimateV3发布详解 支持图文生视频 最大支持960x960x144帧视频生成
AIGC专栏12——EasyAnimateV3发布详解 支持图&文生视频 最大支持960x960x144帧视频生成 学习前言项目特点生成效果相关地址汇总项目主页Huggingface体验地址Modelscope体验地址源码下载地址 EasyAnimate V3详解技术储备Diffusion Transformer (DiT)Hybrid Motion ModuleU-V…...

【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】
👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...