当前位置: 首页 > news >正文

日常学习--20240706

1、udp协议的特点有哪些?

a、无连接,发送和接收数据不需要建立连接,开销小,实时性好

b、不可靠传输,不保证数据包能够到达目的地,也不保证数据包的顺序

c、面向数据报的,以数据报形式发送数据

// 创建DatagramPacket对象,包含要发送的数据、长度、服务器地址和端口
DatagramPacket packet = new DatagramPacket(buffer, buffer.length, address, port);

d、支持广播和多播形式,UDP支持广播和多播功能,这使得UDP能够向多个目的地址发送相同的数据报。

2、TCP如何保证可靠的传输?

序列号和确认应答、超时重传、校验和、流量控制、拥塞控制、连接自动管理、数据分块的方式保证可靠传输。

序列号和确认应答:保证数据到达客户端,客户端能够对数据进行去重、排序等

超时重传:客户端超过定时器时间未应答,则重传

校验和:客户端对数据进行校验和计算对比服务端校验和,如果不一致,则认为数据在传输过程中发生异常,要求服务端重传。

流量控制:服务端会依据客户端的接收窗口大小,调整自己的发送数据速率,避免客户端过多数据堆积,导致丢包重发

拥塞控制:在网络拥堵时,服务端会自动调整自己的发送速率

连接管理:TCP三次握手和四次挥手,确保服务端和客户端已连接

数据分段:TCP数据报文分块,出现丢包等异常时只需重发异常部分。

3、Linux系统的零拷贝技术?

零拷贝(Zero-Copy)就是一种避免 CPU 将数据从一块存储拷贝到另外一块存储的技术,是指将数据直接从磁盘文件复制到网卡设备中,而不需要经由应用程序之手。

传统read+write方式:四次上下文切换和四次数据拷贝(其中两次有CPU参与)

主要方式有:

mmap+write方式:四次上下文切换和三次数据拷贝(用户空间到socket缓冲区时CPU参与)

splice(通过内核管道做中转传递数据),两次上下文切换和两次数据拷贝(要求有一个文件描述符需要支持管道)

sendfile方式:Linux2.4以前,两次上下文切换和三次拷贝(有一次是内核缓冲区拷贝到socket缓冲区);Linux2.4及以后,两次上下文切换和两次拷贝(磁盘到内存缓冲区,内存缓冲区到网卡缓冲区;原来的内核缓冲区到socket内存缓冲区改为了非传统拷贝,在socket缓冲区中引用指向内核缓冲区包含了偏移量等)

4、说一说进程调度算法有哪些

  •  先来先服务(FCFS,First-Come, First-Served):按照进程到达的先后顺序进行调度,先到达的进程先执行。
  • 短作业优先调度(SJF, Shortest Job First):选择估计运行时间最短的进程优先执行,以减少平均等待时间。特点:可以最大程度地减少平均等待时间,但可能会导致长作业被饿死(即长时间得不到执行)。

  • 时间片轮转调度(RR, Round-Robin):所有进程按照到达顺序排成一个队列,每个进程执行一个时间片后,将CPU时间片分配给下一个进程。特点:适用于时间片较短的情况,能够平衡各个进程的执行,但可能导致上下文切换频繁。

  • 优先级调度(PSA, Priority Scheduling Algorithm):为每个进程分配一个优先级,优先级高的进程先获得CPU时间片。特点:可以根据不同的情况调整优先级,但可能导致低优先级的进程长时间等待,出现饥饿现象。

  • 多级反馈队列调度(MFQ, Multi-level Feedback Queue Scheduling):将进程分为多个队列,每个队列有不同的优先级和时间片大小。进程在一个队列中执行完毕后,可以进入下一个优先级较高的队列。特点:能够兼顾不同类型的作业,既可以保证短作业优先执行,又可以避免长作业饥饿。

  • 最高响应比优先调度(HRRN, Highest Response Ratio Next):根据等待时间和估计运行时间的比值(响应比)来选择下一个执行的进程,以最大化响应比。特点:可以减少平均等待时间,但需要预先知道每个进程的运行时间。

相关文章:

日常学习--20240706

1、udp协议的特点有哪些? a、无连接,发送和接收数据不需要建立连接,开销小,实时性好 b、不可靠传输,不保证数据包能够到达目的地,也不保证数据包的顺序 c、面向数据报的,以数据报形式发送数据…...

入门PHP就来我这(高级)12 ~ 获取数据

有胆量你就来跟着路老师卷起来! -- 纯干货,技术知识分享 路老师给大家分享PHP语言的知识了,旨在想让大家入门PHP,并深入了解PHP语言。 1 从结果集中获取一行作为对象 表中数据行如下: 利用mysqli_fetch_array()函数获…...

AIGC专栏12——EasyAnimateV3发布详解 支持图文生视频 最大支持960x960x144帧视频生成

AIGC专栏12——EasyAnimateV3发布详解 支持图&文生视频 最大支持960x960x144帧视频生成 学习前言项目特点生成效果相关地址汇总项目主页Huggingface体验地址Modelscope体验地址源码下载地址 EasyAnimate V3详解技术储备Diffusion Transformer (DiT)Hybrid Motion ModuleU-V…...

【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…...

Android 四大组件

1. Activity 应用程序中,一个Activity通常是一个单独的屏幕,它上面可以显示一些控件,也可以监听并对用户的事件做出响应。 Activity之间通过Intent进行通信,在Intent 的描述结构中,有两个最重要的部分:动…...

【Python】已解决:ModuleNotFoundError: No module named ‘nltk’

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决:ModuleNotFoundError: No module named ‘nltk’ 一、分析问题背景 在使用Python进行自然语言处理或文本分析时,我们经常会用到各种库来辅助我们的工…...

【Docker系列】Docker 命令行输出格式化指南

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

使用Netty构建高性能的网络应用

使用Netty构建高性能的网络应用 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! Netty是一个基于Java NIO的异步事件驱动的网络应用框架,专为快速开发高性能、高可靠性的网络服务器和客户…...

C++11新特性【下】{lambda表达式、可变模板参数、包装器}

一、lambda表达式 在C98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。如果待排序元素为自定义类型,需要用户定义排序时的比较规则,随着C语法的发展,人们开始觉得上面的写法太复杂了&#xff0c…...

SpringBoot使用手册

SpringBoot使用手册 1、自动装配 1.1、创建spring Boot项目 在之前的文章中已经专门写过,这里不做赘述。 1.2、pom.xml 1.2.1、版本管理 在学习完maven项目后,我们学习框架时首先阅读的就是pom.xml文件,这里是管理自己该项目中所用到的…...

HTML CSS 基础复习笔记 - 列表使用

用于自己复习 自定义列表 示例代码 <!DOCTYPE html> <html> <head><title>Definition List Example</title> </head> <body><h1>古诗</h1><dl><dt>静夜思</dt><dd>床前明月光&#xff0c;疑…...

017-GeoGebra基础篇-微积分函数求解圆弧面积问题

基础篇慢慢的走进尾声&#xff0c;今天给大家带来一个小项目&#xff0c;是关于高中数学微积分部分的展示&#xff0c;这个项目主要包含了函数的介绍、函数与图形绘制的区别、区域函数图像的绘制、积分函数的应用、动态文本的调用、嵌套滑动条的应用等等&#xff0c;以及其他常…...

Element中的选择器组件Select (一级选择组件el-select)

简述&#xff1a;在 Element UI 中&#xff0c;ElSelect&#xff08;或简称为 Select&#xff09;是一个非常常用的选择器组件&#xff0c;它提供了丰富的功能来帮助用户从一组预定义的选项中选择一个或多个值。这里来简单记录一下 一. 组件和属性配置 <el-selectv-model&q…...

数值分析笔记(五)线性方程组解法

三角分解法 A的杜利特分解公式如下&#xff1a; u 1 j a 1 j ( j 1 , 2 , ⋯ , n ) , l i 1 a i 1 / u 11 ( i 2 , 3 , ⋯ , n ) , u k j a k j − ∑ m 1 k − 1 l b m u m j ⇒ a k j ( j k , k 1 , ⋯ , n ) , l i k ( a i k − ∑ m 1 k − 1 l i n u m k ) /…...

IDEA中Maven的配置

目录 1. 安装maven 2. 配置环境变量 3. IDEA中配置Maven 4. 配置仓库目录 1. 安装maven 官网下载地址&#xff1a;Maven – Download Apache Maven 下载后&#xff0c;将zip压缩包解压到某个目录即可。 2. 配置环境变量 变量名称随意&#xff0c;通常为M2_HOME&#xff…...

成人高考本科何时报名-深职训学校帮您规划学习之路

你有想过继续深造自己的学历吗&#xff1f;也许你已经工作多年&#xff0c;但总觉得学历是一块心病&#xff0c;想要通过成人高考本科来提升自己。不用着急&#xff0c;今天我们来聊一聊成人高考本科的报名时间&#xff0c;以及深职训学校如何帮助你顺利完成报名。 深圳成人高…...

C++ STL 协程(Coroutines)

一:什么是协程(Coroutines): 协程是轻量级线程,可以暂停和恢复执行,协程拥有自己的暂停点状态,协程暂停时,将当前状态保存起来,在恢复执行时会恢复之前保存的状态。 二:例子: #include <coroutine> #include <iostream>void doTheWork() {std::cout <…...

虚拟机下基于海思移植QT(一)——虚拟机下安装QT

0.参考资料 1.海思Hi3516DV300 移植Qt 运行并在HDMI显示器上显示 2.搭建海思3559A-Qt4.8.7Openssl开发环境 1.报错解决 通过下面命令查询 strings /lib/x86_64-linux-gnu/libc.so.6 | grep GLIBC_通过命令行没有解决&#xff1a; sudo apt install libc6-dev libc6参考解决…...

计算机网络部分知识点整理

停止等待协议的窗口尺寸为 1。 √以太网标准是IEEE802.3TCP/IP四层&#xff0c;OSI模型有7层&#xff0c;地址解析协议 ARP 在 OSI 参考七层协议属于数据链路层&#xff0c;在TCP/IP 协议属于网络层&#xff0c;ARP作用&#xff1a;将 IP 地址映射到第二层地址&#xff0c;交换…...

【Qt】Qt概述

目录 一. 什么是Qt 二. Qt的优势 三. Qt的应用场景 四. Qt行业发展方向 一. 什么是Qt Qt是一个跨平台的C图形用户界面应用程序框架&#xff0c;为应用程序开发者提供了建立艺术级图形界面所需的所有功能。 Qt是完全面向对象的&#xff0c;很容易扩展&#xff0c;同时Qt为开发…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...