当前位置: 首页 > news >正文

Python28-7.5 降维算法之t-分布邻域嵌入t-SNE

t-分布邻域嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)是一种用于数据降维和可视化的机器学习算法,尤其适用于高维数据的降维。t-SNE通过将高维数据嵌入到低维空间(通常是二维或三维)中,使得在高维空间中相似的点在低维空间中仍然保持相似,而不相似的点被分离开来。

t-SNE的基本原理

t-SNE通过两步将高维数据降维:

  1. 计算高维空间中的相似性:在高维空间中,t-SNE使用高斯分布来计算数据点之间的相似性。给定数据点x_i和 x_j,其相似性 p_ij定义为:

    这里,sigma_i 是根据Perplexity参数自动确定的。

  2. 计算低维空间中的相似性:在低维空间中,t-SNE使用t分布来计算数据点之间的相似性。给定低维数据点 y_i和 y_j,其相似性 q_ij定义为:

  3. 最小化KL散度:t-SNE通过最小化高维相似性分布 (P) 和低维相似性分布 (Q) 之间的Kullback-Leibler (KL) 散度来优化低维嵌入:

t-SNE的特点
  • 保持局部结构:t-SNE在保持数据局部结构(局部相似性)方面表现非常好,能够揭示数据中的细节模式。

  • 非线性降维:t-SNE是非线性降维方法,适合处理具有复杂非线性结构的数据。

  • 高计算量:t-SNE计算量较大,尤其是在处理大规模数据集时。

t-SNE的应用

t-SNE广泛应用于数据可视化,特别是以下领域:

  • 图像处理:用于高维图像特征的可视化。

  • 自然语言处理:用于文本和词嵌入的可视化。

  • 生物信息学:用于基因表达数据的可视化。

  • 聚类分析:用于聚类结果的可视化。

示例代码

以下是使用Python库scikit-learn实现t-SNE的示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.datasets import load_digits# 加载数据
digits = load_digits()
X = digits.data
y = digits.target# 使用t-SNE降维
tsne = TSNE(n_components=2, perplexity=30, n_iter=300)
X_embedded = tsne.fit_transform(X)# 可视化结果
plt.figure(figsize=(10, 8))
scatter = plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, cmap='viridis')
plt.colorbar(scatter)
plt.title("t-SNE visualization of the digits dataset")
plt.xlabel("t-SNE component 1")
plt.ylabel("t-SNE component 2")
plt.show()

图片

t-SNE的参数调整
  • Perplexity:影响高斯分布的方差,通常介于5到50之间,反映了考虑邻居数量的平衡。

  • 学习率(learning_rate):影响梯度下降的步长,通常设置在10到1000之间。

  • 迭代次数(n_iter):t-SNE优化过程的迭代次数,通常需要至少250次迭代,建议300次以上。

t-SNE是一种强大的非线性降维方法,特别适用于高维数据的可视化。通过保持高维数据的局部结构,它能够揭示数据中的复杂模式。然而,t-SNE的计算复杂度较高,需要合理选择参数来平衡性能和效果。

以上内容总结自网络,如有帮助欢迎转发,我们下次再见!

相关文章:

Python28-7.5 降维算法之t-分布邻域嵌入t-SNE

t-分布邻域嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)是一种用于数据降维和可视化的机器学习算法,尤其适用于高维数据的降维。t-SNE通过将高维数据嵌入到低维空间(通常是二维或三维)中&…...

一个最简单的comsol斜坡稳定性分析例子——详细步骤

一个最简单的comsol斜坡稳定性分析例子——详细步骤 标准模型例子—详细步骤 线弹性模型下的地应力平衡预应力与预应变、土壤塑性和安全系数求解的辅助扫描...

Java 变量类型

在Java中,变量类型包括基本数据类型和引用数据类型,每种类型有其特定的用途和存储方式。 ### 1. 基本数据类型 Java的基本数据类型包括整数类型、浮点类型、字符类型和布尔类型,它们分别是: - **整数类型**:用于存储…...

【排序算法】—— 快速排序

快速排序的原理是交换排序,其中qsort函数用的排序原理就是快速排序,它是一种效率较高的不稳定函数,时间复杂度为O(N*longN),接下来就来学习一下快速排序。 一、快速排序思路 1.整体思路 以升序排序为例: (1)、首先随…...

前端JS特效第22波:jQuery滑动手风琴内容切换特效

jQuery滑动手风琴内容切换特效&#xff0c;先来看看效果&#xff1a; 部分核心的代码如下&#xff1a; <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xm…...

redis的数据类型对应的使用场景

Redis提供了多种数据类型&#xff0c;每种数据类型都有其特定的适用场景。以下是Redis主要数据类型及其典型应用场景&#xff1a;1. 字符串(String) 应用场景&#xff1a;适用于存储简单的键值对数据&#xff0c;如用户基本信息、计数器&#xff08;如网页访问次数&…...

ctfshow-web入门-命令执行(web118详解)Linux 内置变量与Bash切片

输入数字和小写字母&#xff0c;回显 evil input 查看源码&#xff0c;发现这里会将提交的参数 code 传给 system 函数 使用 burpsuite 抓包进行单个字符的模糊测试 fuzz&#xff1a; 发现过滤掉了数字和小写字母以及一些符号&#xff0c;下面框起来的部分是可用的 结合题目提…...

C语言 指针和数组——指针和二维数组之间的关系

目录 换个角度看二维数组 指向二维数组的行指针 按行指针访问二维数组元素 再换一个角度看二维数组 按列指针访问二维数组元素 二维数组作函数参数 指向二维数组的行指针作函数参数 指向二维数组的列指针作函数参数​编辑 用const保护你传给函数的数据 小结 换个角度看…...

问题集锦1

01.inner中使用JwtTokenUtil.getUserCode() 前端调用上传&#xff08;java&#xff09;&#xff0c;上传使用加购 Overridepublic Boolean insertShoppingCart(InsertShoppingCartParamsDto dto) {// 通过userCode,itemCode和supplierCode来判断当前加购人添加到购物车的商品是…...

浅析MySQL-索引篇01

什么是索引&#xff1f; 索引是帮助存储引擎快速获取数据的一种数据结构&#xff0c;类似于数据的目录。 索引的分类 按数据结构分类&#xff1a; MySQL 常见索引有 BTree 索引、HASH 索引、Full-Text 索引。 Innodb是MySQL5.5之后的默认存储引擎&#xff0c;BTree索引类型也…...

2028年企业云存储支出翻倍,达到1280亿美元

根据Omdia的研究&#xff0c;到2028年&#xff0c;企业云存储支出将从去年的570亿美元翻一番以上&#xff0c;达到1280亿美元。该研究分析了基础设施即服务&#xff08;IaaS&#xff09;和平台即服务&#xff08;PaaS&#xff09;数据中心的收入&#xff0c;作为年度存储数据服…...

ActiViz中的颜色映射表vtkLookupTable

文章目录 一、简介二、VtkLookupTable的创建与初始化三、设置数据范围四、颜色映射设置五、不透明度设置六、自定义颜色映射七、 不连续性颜色映射八、 预设颜色映射方案九、可视化效果优化十、与其他VTK组件的整合十一、 动态调整映射表十二、保存和加载颜色映射表一、简介 V…...

【Spring AOP 源码解析前篇】什么是 AOP | 通知类型 | 切点表达式| AOP 如何使用

前言&#xff08;关于源码航行&#xff09; 在准备面试和学习的过程中&#xff0c;我阅读了还算多的源码&#xff0c;比如 JUC、Spring、MyBatis&#xff0c;收获了很多代码的设计思想&#xff0c;也对平时调用的 API 有了更深入的理解&#xff1b;但过多散乱的笔记给我的整理…...

Laravel HTTP客户端:网络请求的瑞士军刀

标题&#xff1a;Laravel HTTP客户端&#xff1a;网络请求的瑞士军刀 Laravel的HTTP客户端是一个功能强大的工具&#xff0c;它提供了一种简洁、直观的方式来发送HTTP请求。无论是与外部API集成&#xff0c;还是进行网络数据抓取&#xff0c;Laravel的HTTP客户端都能满足你的需…...

7月07日,每日信息差

第一、6 月份&#xff0c;北京、上海、广州和深圳的新建商品住宅成交量分别环比增加 21%、66%、48% 和 38%&#xff0c;均创年内新高 第二、2024 年世界人工智能大会上&#xff0c;上海向四家企业发放了首批无驾驶人智能网联汽车示范应用许可&#xff0c;这些企业可以在浦东部…...

ubuntu 网络常用命令

在Ubuntu中&#xff0c;有许多网络相关的常用命令。以下是一些主要命令及其用途&#xff1a; ifconfig&#xff1a;此命令用于显示和配置网络接口信息。你可以使用它来查看IP地址、子网掩码、广播地址等。 例如&#xff1a;ifconfig 注意&#xff1a;在新版本的Linux发行版中…...

Python28-7.4 独立成分分析ICA分离混合音频

独立成分分析&#xff08;Independent Component Analysis&#xff0c;ICA&#xff09;是一种统计与计算技术&#xff0c;主要用于信号分离&#xff0c;即从多种混合信号中提取出独立的信号源。ICA在处理盲源分离&#xff08;Blind Source Separation&#xff0c;BSS&#xff0…...

Spring Boot与Okta的集成

Spring Boot与Okta的集成 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将探讨如何在Spring Boot应用中集成Okta&#xff0c;实现身份认证和授权的功能…...

MVC(Model-View-Controller)模式

MVC&#xff08;Model-View-Controller&#xff09;模式三个主要组件&#xff1a;模型&#xff08;Model&#xff09;&#xff0c;视图&#xff08;View&#xff09;&#xff0c;和控制器&#xff08;Controller&#xff09;&#xff1a; 模型&#xff08;Model&#xff09;&a…...

MuLan:模仿人类画家的多对象图像生成

在图像生成领域&#xff0c;处理包含多个对象及其空间关系、相对大小、重叠和属性绑定的复杂提示时&#xff0c;现有的文本到图像模型仍面临挑战&#xff1a;当文本提示中包含多个对象&#xff0c;并且这些对象之间存在特定的空间关系时&#xff0c;现有模型往往难以准确地捕捉…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...