MuLan:模仿人类画家的多对象图像生成
在图像生成领域,处理包含多个对象及其空间关系、相对大小、重叠和属性绑定的复杂提示时,现有的文本到图像模型仍面临挑战:当文本提示中包含多个对象,并且这些对象之间存在特定的空间关系时,现有模型往往难以准确地捕捉和表现这些复杂的场景。
例如,假设有一个文本提示是“一个橙色的南瓜放在黑色的门的右边”。对于这样的提示,现有的文本到图像(T2I)模型可能无法正确地将南瓜和门的相对位置以及属性(如颜色)表现出来。这主要是因为现有模型在空间推理能力上存在限制,并且它们与扩散模型的结合并不总是能够精确地理解和处理复杂的文本提示。
自香港科技大学、加州大学洛杉矶分校、宾夕法尼亚州立大学和马里兰大学的研究团队提出了一个无需训练的多模态大型语言模型(LLM)代理。MuLan的核心思想是将复杂的文本提示分解为一系列更简单的子提示,每个子提示只关注生成提示中的一个对象。这种方法模仿了人类画家的工作方式,即先制定一个高级的计划,然后逐步绘制每个对象,并在必要时进行修正。

方法

如图1所示MuLan由三个主要部分组成:
-
LLM规划(LLM planning):这部分涉及使用大型语言模型(LLM)来规划图像生成的总体布局。LLM负责将复杂的文本提示分解为一系列更易管理的子提示,每个子提示关注生成提示中的一个对象。
-
单一对象扩散与注意力引导(Single-object diffusion with attention guidance):在这一步,MuLan集中于根据子提示和之前已生成的对象来生成一个单一的对象。LLM为新对象提供一个大致的布局规划,而注意力引导则确保对象在图像中的位置和形状精确,通过提供一个准确的掩码来实现。
-
VLM反馈控制(VLM-feedback control):这是MuLan中的一个反馈循环机制,使用视觉-语言模型(VLM)来评估当前生成步骤的结果,并与原始文本提示进行对比。如果发现任何偏差或错误,VLM将提供反馈,MuLan据此调整扩散模型的超参数,以重新生成图像,确保每一步的生成结果都尽可能地符合原始提示的要求。
研究者设计的MuLan系统利用LLM的高级语言理解能力,自动地从原始文本提示中识别出各个对象,并确定它们在图像中的相对位置和顺序。这一过程模仿了人类画家在开始绘画前制定计划的方式,LLM根据预定义的空间顺序——从左到右、从下到上——来组织对象,确保生成的图像布局合理且符合人类的直观感受。
为了实现这一目标,研究者为LLM提供了一个明确的任务描述,指导模型将文本提示中的对象按照绘画的顺序进行排列。LLM根据这个描述,生成一个对象列表,这个列表决定了在图像生成过程中各个对象的创建顺序。这个过程不仅需要LLM理解文本中的对象和它们的关系,还需要它能够预测并规划出这些对象在最终图像中的布局。
研究者还为LLM设计了一套模板,用于在生成过程中对每个对象的大致位置和大小进行规划。这包括确定对象是在另一个对象的左边、右边、上方或下方,以及估计对象的数量。通过这种方式,MuLan能够在生成每个对象之前,就对它们在图像中的分布有一个初步的规划。
MuLan 利用大型语言模型(LLM)规划和注意力引导来逐步生成图像过程开始于LLM规划的粗略掩码,该掩码定义了新对象在图像中的预期位置和大小。这个掩码基于LLM对对象相对位置的规划,考虑到图像中当前可用的空间。例如,如果前一个对象已经放置在图像的左侧,LLM将决定新对象的位置,可能是在右侧或者上方,并估计对象的尺寸。
接下来,MuLan使用稳定扩散模型在由注意力掩码定义的边界框内生成对象。注意力引导在这一步骤中发挥了至关重要的作用,它确保了对象在生成过程中能够被精确地定位。就是说MuLan利用反向引导方法,通过调整扩散模型的输入潜在表示,来引导对象在图像中的正确位置生成。
MuLan还考虑了对象间的重叠问题。在生成新对象时,如果LLM判断存在与前一个对象的重叠,MuLan会计算几个候选的粗略掩码,这些掩码对应不同的重叠比例。然后,MuLan会使用这些掩码生成几个候选图像,并通过计算输入提示与生成图像之间的一致性得分来选择最佳图像。
最后,MuLan通过视觉-语言模型(VLM)进行反馈控制,以确保生成的每个对象都与原始文本提示保持一致。如果在任何生成阶段检测到错误,VLM将提供反馈,MuLan据此调整扩散模型的参数,重新生成对象。

MuLan在生成每个对象后,会利用VLM对生成的图像进行评估。VLM的作用是提供对当前生成步骤的反馈,确保图像中的对象与原始文本提示保持一致。如果VLM检测到生成的对象与预期不符,比如对象的位置、大小或属性与文本描述不匹配,它将向MuLan提供反馈,指出需要调整的地方。
基于VLM的反馈,MuLan可以调整扩散模型的超参数,对图像进行重新生成。这个过程可以重复进行,直到生成的图像满足文本提示的要求。这种自适应的反馈和调整机制是MuLan系统的核心特点之一,它使得系统能够持续优化生成结果,提高图像的准确性和真实性。
除了与VLM的交互外,MuLan还考虑了人类用户的参与。在实际应用中,人类用户可能希望对生成过程进行监督或提出特定要求。MuLan的设计允许人类用户在生成过程中提供输入,比如调整文本提示或对生成的图像给出评价。这种用户交互可以进一步提高生成图像的满意度,并使MuLan更加灵活和适应不同的应用场景。

实验
研究者为了评估MuLan框架,构建了一个由不同基准测试组成的提示数据集。这个数据集专注于生成包含多个对象、空间关系和属性绑定的复杂提示。研究者首先从T2I-CompBench收集了所有复杂的空间提示,并通过ChatGPT生成了约400个具有不同对象、空间关系和属性绑定的提示,使提示集包含约600个提示。为了进一步评估框架在极其复杂和困难的提示上的能力,研究者手动添加了SDXL无法生成的提示,形成了包含200个提示的困难提示数据集。
作为一个无需训练的框架,MuLan可以集成到任何现有的扩散模型中。研究者评估了两种稳定扩散模型与MuLan框架的结合效果,包括Stable Diffusion v1.4和最先进的Stable Diffusion XL。为了验证MuLan的优越性,研究者将其与先前的可控生成方法和通用T2I生成方法进行了比较,包括Structure Diffusion、Promptist、原始的Stable Diffusion v1.4、原始的SDXL和最近的SOTA扩散模型PixArt-α。
MuLan使用GPT-4作为LLM规划器,并使用LLaVA-1.5作为VLM检查器提供反馈。研究者还进行了消融研究,以展示VLM提供的反馈控制在所提出的框架中的重要性,以及不同VLM的影响。研究者发现在注意力引导过程中使用的注意力块至关重要,这些块可以被分类为近输入块、近中间块和近输出块。在主要实验中,研究者使用了近中间块,并展示了不同块的消融结果。
由于提示数据集包含具有复杂组成的文本,研究者设计了一个问卷,全面调查生成图像与相应输入文本之间的一致性。问卷由三个方面组成 - 对象完整性、属性绑定的正确性以及空间关系的准确性。对于每个问题,研究者只设置了两个选项(是或否),没有歧义。研究者使用问卷询问最新一代的多模态大型语言模型(GPT-4V)和人类评估者对生成图像的质量进行评估。
研究者使用GPT-4V对不同方法和不同基础模型生成的图像进行了评估结果显示,MuLan框架在与其他可控生成方法和T2I生成方法相比时,能够实现最佳性能。特别是在属性绑定和空间关系的两个“更难”方面,MuLan能够以较大优势超越其他方法。



研究者从提示数据集中随机抽取了50个提示,用于消融研究中的所有实验。研究者发现,近中间块在生成控制和性能方面能够实现最佳结果,通常包含最丰富的语义信息。
VLM反馈控制是MuLan中提供反馈和调整生成过程以确保每个阶段正确生成的关键组件。研究者展示了通过从整个框架中移除反馈控制的重要性。结果显示,如果没有反馈控制,结果会大大恶化,因为没有保证或适应性调整每个生成阶段,这验证了VLM提供的反馈控制对于处理复杂提示至关重要。


实验表明,MuLan优于先前的方法,展示了MuLan作为可控扩散生成新范式的潜力。

尽管MuLan取得了显著的成果,但仍存在需要在未来工作中进一步解决的局限性。由于整个生成包含多个阶段,根据对象的数量,它将比单阶段生成方法需要更长的时间。另一方面,LLM规划器可能会错误地解析输入提示,导致错误的分解。这可以通过首先通过LLM重写输入提示来解决,以便于后续处理。
相关文章:

MuLan:模仿人类画家的多对象图像生成
在图像生成领域,处理包含多个对象及其空间关系、相对大小、重叠和属性绑定的复杂提示时,现有的文本到图像模型仍面临挑战:当文本提示中包含多个对象,并且这些对象之间存在特定的空间关系时,现有模型往往难以准确地捕捉…...

如何在Android中实现网络通信,如HttpURLConnection和HttpClient。
在Android开发中,网络通信是一个不可或缺的功能,它允许应用与服务器交换数据,实现丰富的功能。在实现网络通信时,HttpURLConnection和HttpClient是两种常用的方式。下面将从技术难点、面试官关注点、回答吸引力以及代码举例四个方…...

评价ChatGPT与强人工智能的未来
在人工智能领域,ChatGPT的出现无疑是一个里程碑事件。它不仅展示了自然语言处理技术的巨大进步,也引发了人们对于强人工智能(AGI)的无限遐想。本文将从多个角度评价ChatGPT,并探讨强人工智能距离我们还有多远。 ChatGP…...

【web前端HTML+CSS+JS】--- CSS学习笔记02
一、CSS(层叠样式表)介绍 1.优势 2.定义解释 如果有多个选择器共同作用的话,只有优先级最高那层样式决定最终的效果 二、无语义化标签 div和span:只起到描述的作用,不带任何样式 三、标签选择器 1.标签/元素选择器…...

linux 安装 ImageMagick 及 php imagick扩展
安装imagick扩展前必须安装ImageMagick 一、安装ImageMagick wget http://www.imagemagick.org/download/ImageMagick.tar.gz 上面如果报错(cannot verify download.imagemagick.org’s certificate)执行 sudo yum install -y ca-certificates tar zxv…...

秋招突击——7/5——复习{}——新作{跳跃游戏II、划分字母区间、数组中的第K个大的元素(模板题,重要)、前K个高频元素}
文章目录 引言正文贪心——45 跳跃游戏II个人实现参考实现 划分字母区间个人实现参考实现 数组中的第K个最大元素个人实现参考做法 前K个高频元素个人实现参考实现 总结 引言 今天就开始的蛮早的,现在是九点多,刚好开始做算法,今天有希望能够…...

【Linux】信号的处理
你很自由 充满了无限可能 这是很棒的事 我衷心祈祷你可以相信自己 无悔地燃烧自己的人生 -- 东野圭吾 《解忧杂货店》 信号的处理 1 信号的处理2 内核态 VS 用户态3 键盘输入数据的过程4 如何理解OS如何正常的运行5 如何进行信号捕捉信号处理的总结6 可重入函数volatile关…...

Python数据分析的数据导入和导出
在Python数据分析中,数据的导入和导出是非常关键的步骤。这些步骤通常涉及到将数据从外部文件(如CSV、Excel、数据库等)读入到Python程序中,以及将处理后的数据导出回外部文件或数据库。以下是一些常用的库和方法来实现这些操作。…...

【JAVA多线程】线程池概论
目录 1.概述 2.ThreadPoolExector 2.1.参数 2.2.新任务提交流程 2.3.拒绝策略 2.4.代码示例 1.概述 线程池的核心: 线程池的实现原理是个标准的生产消费者模型,调用方不停向线程池中写数据,线程池中的线程组不停从队列中取任务。 实现…...

java双亲委派机制
Java中的双亲委派机制(Parent Delegation Model)是一种类加载机制,它确保了类加载的安全性和一致性。该机制规定了类加载器在加载类时的顺序和方式,从而避免了重复加载和类冲突问题。 以下是一个简单的自定义类加载器的示例&#…...

记录第一次使用air热更新golang项目
下载 go install github.com/cosmtrek/airlatest 下载时提示: module declares its path as: github.com/air-verse/air but was required as: github.com/cosmtrek/air 此时,需要在go.mod中加上这么一句: replace github.com/cosmtrek/air &…...

Leetcode 3213. Construct String with Minimum Cost
Leetcode 3213. Construct String with Minimum Cost 1. 解题思路2. 代码实现 题目链接:3213. Construct String with Minimum Cost 1. 解题思路 这一题的话思路上还是比较直接的,就是一个trie树加一个动态规划,通过trie树来快速寻找每一个…...

python操作SQLite3数据库进行增删改查
python操作SQLite3数据库进行增删改查 1、创建SQLite3数据库 可以通过Navicat图形化软件来创建: 2、创建表 利用Navicat图形化软件来创建: 存储在 SQLite 数据库中的每个值(或是由数据库引擎所操作的值)都有一个以下的存储类型: NULL. 值是空值。 INTEGER. 值是有符…...

【电控笔记6.7】非最小相位系统
全通滤波器 [...

Day05-04-持续集成总结
Day05-04-持续集成总结 1. 持续集成2. 代码上线目标项目 1. 持续集成 git 基本使用, 拉取代码,上传代码,分支操作,tag标签 gitlab 用户 用户组 项目 , 备份,https,优化. jenkins 工具平台,运维核心, 自由风格工程,maven风格项目,流水线项目, 流水线(pipeline) mavenpom.xmlta…...

PyQt5动态热力图清空画布关闭ColorBar
PyQt5生成正弦波动态热力图清空画布关闭ColorBar 1、简介 生成随机正弦波,使用pyqtgraph展示出来,并且使用热力图展示不同频率的正弦波,使用不同的画布颜色显示热力图的变化。 使用python3.8 导入库: pip install matplotlib==3.7.5 pip install numpy==1.24.4 pip in…...

python爬虫入门(一)之HTTP请求和响应
一、爬虫的三个步骤(要学习的内容) 1、获取网页内容 (HTTP请求、Requests库) 2、解析网页内容 (HTML网页结构、Beautiful Soup库) 3、存储或分析数据 b站学习链接: 【【Python爬虫】爆肝两…...

华为OD机考题(HJ41 称砝码)
前言 经过前期的数据结构和算法学习,开始以OD机考题作为练习题,继续加强下熟练程度。有需要的可以同步练习下。 描述 现有n种砝码,重量互不相等,分别为 m1,m2,m3…mn ; 每种砝码对应的数量为 x1,x2,x3...xn 。现在要…...

Qt涂鸦板
Qt版本:Qt6 具体代码: 头文件 dialog.h #ifndef DIALOG_H #define DIALOG_H#include <QDialog>QT_BEGIN_NAMESPACE namespace Ui { class Dialog; } QT_END_NAMESPACEclass Dialog : public QDialog {Q_OBJECTpublic:Dialog(QWidget *parent n…...

C++_03
1、构造函数 1.1 什么是构造函数 类的构造函数是类的一种特殊的成员函数,它会在每次创建类的新对象时执行。 每次构造的是构造成员变量的初始化值,内存空间等。 构造函数的名称与类的名称是完全相同的,并且不会返回任何类型,也不…...
强化学习中的Double DQN、Dueling DQN和PER DQN算法详解及实战
1. 深度Q网络(DQN)回顾 DQN通过神经网络近似状态-动作值函数(Q函数),在训练过程中使用经验回放(Experience Replay)和固定目标网络(Fixed Target Network)来稳定训练过程…...

前端八股文 说一说样式优先级的规则是什么?
标准的回答 CSS样式的优先级应该分成四大类 第一类 !important: 😄无论引入方式是什么,选择器是什么,它的优先级都是最高的。 第二类 引入方式: 😄行内样式的优先级要高于嵌入和外链,嵌入和外链…...

洞察国内 AI 绘画行业的璀璨前景
在科技的浪潮中,AI 绘画如同一颗璀璨的新星,正在国内的艺术与技术领域绽放出耀眼的光芒。 近年来,国内 AI 绘画行业发展迅猛,展现出巨大的潜力。随着人工智能技术的不断突破,AI 绘画算法日益精进,能够生成…...

socket编程
文章目录 套接字网路字节序列TCP和UDP套接字 本文章主要介绍Linux下套接字的相关接口,和一些基础知识。 套接字 所有网络通信的行为本质都是进程间进行通信,网络通信也是进程间通信,只不过是不同主机上的两个进程之间的通信。网络通信对于双…...

python自动移除excel文件密码(升级v2版本)
欢迎查看第一版 https://blog.csdn.net/weixin_45631815/article/details/140013476?spm1001.2014.3001.5502 一功能改进 此版本主要改进功能有以下: 直接可以调用函数实现可以尝试多个密码没有加密的文件进行保存,可以按实际业务进行改进.思路来源:java 面向对象设计模式.…...

深入MOJO编程语言的单元测试世界
引言 在软件开发的历程中,单元测试扮演着至关重要的角色。单元测试不仅帮助开发者确保代码的每个部分都按预期工作,而且也是代码质量和维护性的关键保障。本文将引导读者了解如何在MOJO这一假想编程语言中编写单元测试,尽管MOJO并非真实存在…...

Canvas:掌握颜色线条与图像文字设置
想象一下,用几行代码就能创造出如此逼真的图像和动画,仿佛将艺术与科技完美融合,前端开发的Canvas技术正是这个数字化时代中最具魔力的一环,它不仅仅是网页的一部分,更是一个无限创意的画布,一个让你的想象…...

打包导入pyzbar的脚本时的注意事项
目录 前言问题问题的出现解决 总结 本文由Jzwalliser原创,发布在CSDN平台上,遵循CC 4.0 BY-SA协议。 因此,若需转载/引用本文,请注明作者并附原文链接,且禁止删除/修改本段文字。 违者必究,谢谢配合。 个人…...

02-android studio实现下拉列表+单选框+年月日功能
一、下拉列表功能 1.效果图 2.实现过程 1)添加组件 <LinearLayoutandroid:layout_width"match_parent"android:layout_height"wrap_content"android:layout_marginLeft"20dp"android:layout_marginRight"20dp"android…...

曹操的五色棋布阵 - 工厂方法模式
定场诗 “兵无常势,水无常形,能因敌变化而取胜者,谓之神。” 在三国的战场上,兵法如棋,布阵如画。曹操的五色棋布阵,不正是今日软件设计中工厂方法模式的绝妙写照吗?让我们从这个神奇的布阵之…...