当前位置: 首页 > news >正文

泰勒雷达图2

matplotlib绘制泰勒雷达图

import matplotlib.pyplot as plt
import numpy as np
from numpy.core.fromnumeric import shape
import pandas as pd
import dask.dataframe as dd
from matplotlib.projections import PolarAxes
import mpl_toolkits.axisartist.floating_axes as FA
import mpl_toolkits.axisartist.grid_finder as GF
from matplotlib.transforms import Affine2Dclass TaylorDiagram:"""ref: pandas.DataFrame one columnsamples: pandas.DataFrame multiple columns"""def __init__(self, ax, ref, samples, Normalize=False, markers=[], colors=[], scale=1.2, ms=10, pkwargs={}):self.points = []self.Normalize = Normalizeself.pkwargs = pkwargsself.markers = markers if len(markers) else ['o', 'o', 's', 'v', 'o', 's', 'v'] * 100self.colors = colors if len(colors) else ['tab:blue', 'tab:red', 'tab:red', 'tab:red', 'tab:green', 'tab:green', 'tab:green', '#1abc9c', '#2ecc71', '#3498db', '#9b59b6', '#34495e']self.ms = msself.ref = refself.scale = scaleself.samples = samplesself.fig = plt.gcf()  # get current figureself.step_up(ax)  # set up a diagram axesself.plot_sample()  # draw sample points# self.add_legend()  # add legenddef calc_loc(self, x, y):# x为参考数据,y为评估数据# theta为弧度;r为半径R = x.corr(other=y, method='pearson')theta = np.arccos(R)r = y.std()return theta, r / self._refstd if self.Normalize else rdef step_up(self, ax):# close the original axisax.axis('off')ll, bb, ww, hh = ax.get_position().bounds# polar transformtr = PolarAxes.PolarTransform()# theta rangeRlocs = np.array([0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1])Tlocs = np.arccos(Rlocs)  # convrt to theta locations# grid findergl1 = GF.FixedLocator(Tlocs)  # theta locatortf1 = GF.DictFormatter(dict(zip(Tlocs, map(str, Rlocs))))  # theta formatter# std rangeself._refstd = self.ref.std()self.stdmax = max([self.samples[col].std() for col in self.samples.columns] + [self._refstd])self.Smax = (1 if self.Normalize else self.stdmax)* self.scaleself.refstd = 1 if self.Normalize else self._refstdSlocs = np.linspace(0, self.Smax, 4)gl2 = GF.FixedLocator(Slocs)  # theta locatortf2 = GF.DictFormatter(dict(zip(Slocs, map(lambda i: '%.1f' % i, Slocs))))  # theta formatter# construct grid helpergrid_helper = FA.GridHelperCurveLinear(tr, extremes=(0, np.pi / 2, 0, self.Smax),grid_locator1=gl1, tick_formatter1=tf1,grid_locator2=gl2, tick_formatter2=tf2,)ax = self.fig.add_axes([ll, bb, ww, hh], facecolor='none', axes_class=FA.FloatingAxes, grid_helper=grid_helper)# thetaax.axis["top"].set_axis_direction("bottom")ax.axis["top"].toggle(ticklabels=True, label=True)ax.axis["top"].major_ticklabels.set_axis_direction("top")ax.axis["top"].label.set_axis_direction("top")ax.axis["top"].label.set_text("Correlation")ax.axis["top"].major_ticklabels.set_pad(8)# std leftax.axis["left"].set_axis_direction("bottom")ax.axis["left"].toggle(ticklabels=True)# std bottomax.axis["right"].set_axis_direction("top")ax.axis["right"].toggle(ticklabels=True, label=True)ax.axis["right"].label.set_text("Standard deviation")ax.axis["right"].major_ticklabels.set_axis_direction("left")ax.axis["right"].major_ticklabels.set_pad(8)# hideax.axis['bottom'].set_visible(False)# draw gridax.grid(linestyle='--', color='gray')self._ax = axself.ax = ax.get_aux_axes(tr)# STD线t = np.linspace(0, np.pi/2)r = np.zeros_like(t) + self.refstdself.ax.plot(t, r, 'k--')# RMS格网rs, ts = np.meshgrid(np.linspace(0, self.Smax, 100), np.linspace(0, np.pi/2, 100))rms = (self.refstd**2 + rs**2 - 2*self.refstd*rs*np.cos(ts))**0.5contours = self.ax.contour(ts, rs, rms, levels=np.linspace(0, self.scale, 4) if self.Normalize else 4,colors='gray', linestyles='--', alpha=.5)self.ax.clabel(contours, contours.levels, inline=True, fmt='%.1f', fontsize=10)# 绘制参考点p, = self.ax.plot(0, self.refstd, linestyle='', marker=self.markers[0], color=self.colors[0],markersize=self.ms, alpha=0.5, **self.pkwargs)p.set_label(self.ref.name)p.set_clip_on(True)  # reference点不被裁剪self.points.append(p)def plot_sample(self):stds = []for col, marker, color in zip(self.samples.columns, self.markers[1:], self.colors[1:]):t, s = self.calc_loc(self.ref, self.samples[col])p, = self.ax.plot(t, s, linestyle='', marker=marker, color=color, markersize=self.ms, alpha=.5, **self.pkwargs)p.set_label(col)self.points.append(p)stds.append(s)self.ax.set_xlim(xmax=max(stds))def add_legend(self):ll, bb, ww, hh = self.ax.get_position().boundsself.ax.legend(ncol=len(self.samples) + 1, loc='lower center', frameon=False, bbox_to_anchor=(ll, bb - hh*0.3, ww, hh*0.1))
if __name__ == "__main__":print('read data')df =pd.read_csv(r'C:\Users\Administrator\Desktop\123.csv')
#     df=pd.DataFrame(df)
#     print(df)fig, axes = plt.subplots(1, 1, figsize=(5, 5))td = TaylorDiagram(axes,df.iloc[:, 0], df.iloc[:,1:], ms=20, Normalize=True, scale=1.5)plt.show()

在这里插入图片描述

相关文章:

泰勒雷达图2

matplotlib绘制泰勒雷达图 import matplotlib.pyplot as plt import numpy as np from numpy.core.fromnumeric import shape import pandas as pd import dask.dataframe as dd from matplotlib.projections import PolarAxes import mpl_toolkits.axisartist.floating_axes a…...

数据库容灾 | MySQL MGR与阿里云PolarDB-X Paxos的深度对比

开源生态 众所周知,MySQL主备库(两节点)一般通过异步复制、半同步复制(Semi-Sync)来实现数据高可用,但主备架构在机房网络故障、主机hang住等异常场景下,HA切换后大概率就会出现数据不一致的问…...

react根据后端返回数据动态添加路由

以下代码都为部分核心代码 一.根据不同的登录用户,返回不同的权限列表 ,以下是三种不同用户限权列表 const pression { //超级管理员BigAdmin: [{key: "screen",icon: "FileOutlined",label: "数据图表",},{key: "…...

机器学习中的可解释性

「AI秘籍」系列课程: 人工智能应用数学基础 人工智能Python基础 人工智能基础核心知识 人工智能BI核心知识 人工智能CV核心知识 为什么我们需要了解模型如何进行预测 我们是否应该始终信任表现良好的模型?模型可能会拒绝你的抵押贷款申请或诊断你患…...

上海慕尼黑电子展开展,启明智显携物联网前沿方案亮相

随着科技创新的浪潮不断涌来,上海慕尼黑电子展在万众瞩目中盛大开幕。本次展会汇聚了全球顶尖的电子产品与技术解决方案,成为业界瞩目的焦点。启明智显作为物联网彩屏显示领域的佼佼者携产品亮相展会,为参展者带来了RTOS、LINUX全系列方案及A…...

Centos7离线安装ElasticSearch7.4.2

一、官网下载相关的安装包 ElasticSearch7.4.2: elasticsearch-7.4.2-linux-x86_64.tar.gz 下载中文分词器: elasticsearch-analysis-ik-7.4.2.zip 二、上传解压文件到服务器 上传到目录:/home/data/elasticsearch 解压文件&#xff1…...

深入理解sklearn中的模型参数优化技术

参数优化是机器学习中的关键步骤,它直接影响模型的性能和泛化能力。在sklearn中,参数优化可以通过多种方式实现,包括网格搜索(GridSearchCV)、随机搜索(RandomizedSearchCV)和贝叶斯优化等。本文…...

【Elasticsearch】开源搜索技术的演进与选择:Elasticsearch 与 OpenSearch

开源搜索技术的演进与选择:Elasticsearch 与 OpenSearch 1.历史发展2.OpenSearch 与 Elasticsearch 相同点3.OpenSearch 与 Elasticsearch 不同点3.1 版本大不同3.2 许可证不同3.3 社区不同3.4 功能不同3.5 安全性不同3.6 性能不同3.7 价格不同3.8 两者可相互导入 4…...

欧拉openEuler 22.03 LTS-部署k8sv1.03.1

1.设置ip # vi /etc/sysconfig/network-scripts/ifcfg-ens32 TYPEEthernet PROXY_METHODnone BROWSER_ONLYno BOOTPROTOstatic DEFROUTEyes IPV4_FAILURE_FATALno #IPV6INITyes #IPV6_AUTOCONFyes #IPV6_DEFROUTEyes #IPV6_FAILURE_FATALno #IPV6_ADDR_GEN_MODEeui64 NAMEens1…...

老年生活照护实训室:为养老服务业输送专业人才

本文探讨了老年生活照护实训室在养老服务业专业人才培养中的关键作用。通过详细阐述实训室的功能、教学实践、对学生能力的培养以及面临的挑战和解决方案,强调了其在提升人才素质、满足行业需求方面的重要性,旨在为养老服务业的可持续发展提供有力的人才…...

go语言中使用WaitGroup和channel实现处理多线程问题

WaitGroup 背景 如果将一个任务分为任意个小任务,并且不关心小任务的执行顺序,并且希望等待全部的小任务执行完成后再去操作后面的逻辑,那我推荐你用sync.WaitGRoup 使用方法 比如,有一个任务需要执行 3 个子任务,…...

Open3D 计算点云的平均密度

目录 一、概述 1.1基于领域密度计算原理 1.2应用 二、代码实现 三、实现效果 2.1点云显示 2.2密度计算结果 一、概述 在点云处理中,点的密度通常表示为某个点周围一定区域内的点的数量。高密度区域表示点云较密集,低密度区域表示点云较稀疏。计算…...

C语言之数据在内存中的存储(1),整形与大小端字节序

目录 前言 一、整形数据在内存中的存储 二、大小端字节序 三、大小端字节序的判断 四、字符型数据在内存中的存储 总结 前言 本文主要讲述整型包括字符型是如何在内存中存储的,涉及到大小端字节序这一概念,还有如何判断大小端,希望对大…...

B端全局导航:左侧还是顶部?不是随随便便,有依据在。

一、什么是全局导航 B端系统的全局导航是指在B端系统中的主要导航菜单,它通常位于系统的顶部或左侧,提供了系统中各个模块和功能的入口。全局导航菜单可以帮助用户快速找到和访问系统中的各个功能模块,提高系统的可用性和用户体验。 全局导航…...

什么是海外仓管理自动化?策略及落地实施步骤指南

作为海外仓的管理者,你每天都面临提高海外仓运营效率、降低成本和满足客户需求的问题。海外仓自动化管理技术为这些问题提供了不错的解决思路,不过和任何新技术一样,从策略到落地实施,都有一个对基础逻辑的认识过程。 今天我们整…...

自定义控件三部曲之绘图篇(六)Paint之函数大汇总、ColorMatrix与滤镜效果、setColorFilter

在自定义控件的绘图篇中,Paint 类是核心的组成部分之一,它控制了在 Canvas 上绘制的内容的各种属性,包括颜色、风格、抗锯齿、透明度等等。下面将详细介绍 Paint 的主要功能以及如何使用 ColorMatrix 和 setColorFilter 来实现滤镜效果。 Pa…...

请写sql满足业务:找到连续登录3天以上的用户

为了找到连续登录超过 3 天的用户,我们可以使用 SQL 窗口函数和递归查询来实现。假设有一个 user_logins 表,包含以下字段: user_id(用户ID)login_date(登录日期) 假设 login_date 是 DATE 类…...

fatal error: apriltag/apriltag.h: No such file or directory 的 参考解决方法

文章目录 写在前面一、问题描述二、解决方法参考链接 写在前面 自己的测试环境: Ubuntu20.04,ROS-Noteic 一、问题描述 自己编译ROS程序的时候遇到如下问题: fatal error: apriltag/apriltag.h: No such file or directory9 | #include &…...

C++继承(一文说懂)

目录 一: 🔥继承的概念及定义1.1 继承的概念1.2 继承定义1.2.1 定义格式1.2.2 继承关系和访问限定符1.2.3 继承基类成员访问方式的变化 二:🔥基类和派生类对象赋值转换三:🔥继承中的作用域四:&a…...

卷积神经网络可视化的探索

文章目录 训练LeNet模型下载FashionMNIST数据训练保存模型 卷积神经网络可视化加载模型一个测试图像不同层对图像处理的可视化第一个卷积层的处理第二个卷积层的处理 卷积神经网络是利用图像空间结构的一种深度学习网络架构,图像在经过卷积层、激活层、池化层、全连…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...